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Probability Does Not Exist.
Bruno de Finetti (1906-1985)
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Problem Formulation and Challenges

Problem Statement: Multi-object tracking
(MOT) aims to jointly estimate the
number of objects and path, location,
characteristics of objects from sensor data

Each object may leave or stay in the
field of view with a time dependent
probability and transition to next time
according to a transition probability
kernel

Each survived object transitions to the
next time according to a transition
kernel

New objects can join the scene at
random

Object cardinality is unknown

Challenges:

Unknown time-varying number of
objects

Robustly associate objects at each
time step

Uncertainty on parameters such as
measurement noise or clutter
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Multiple Object Tracking Model

Motion Model

Each existing object x`,k−1 may
• leave the scene w.p. 1− P`,k|k−1
• stay in the scene w.p. P`,k|k−1 and transition to the next time using transition

probability kernel Qθ(x`,k−1, ·)
A random number of new objects can appear from random locations in the state
space

Measurement Model

Each object x`,k generates an observation zl ,k with likelihood p(zl ,k |x`,k)

Tasks:

A. Construct a prior to capture the dependency among the objects → Prior

B. Estimate trajectory → Inference
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Related Work

Object tracking has been studied in various ways:

1. Bayesian methods for a single object tracking
I Kalman filter, Particle filter, The interacting multiple model for maneuvering, The

nearest neighbor for tracking, The probabilistic data association filter

2. Random finite set theory for multi object tracking
I Multiple hypothesis tracking filter, Joint probability data association filter,

Probability hypothesis density filter, Labeled multi-Bernoulli filter, Generalized
labeled multi-Bernoulli filter

3. Deep Learning models for multi object tracking
I Deep affinity network for multiple object tracking, Deep network flow for multi

object tracking , Data association for multi object tracking via deep neural networks

4. Bayesian nonparametrics for tracking
I Evolutionary Clustering, Dynamic Clustering, Bayesian inference for linear dynamic

model through Dirichlet processes, Hierarchical Dirichlet process for maneuvering
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Contributions

Bayesian Nonparametric Modeling for Multiple Object Tracking:

Dependent Bayesian nonparametric models as a prior on object states

(a) Survival (b) Birth, and (c) Death
Adjust the probabilities among new and transitioned objects
Dependent models to update object cardinality and posterior distribution
Simple inferential methods such as MCMC and VB
Captures full dependency with a well known nonparametric marginal distribution

Achieve higher estimation accuracy and lower computational cost at lower SNR
values

Consistent dependent process

Achieve optimal frequentist minimax rate of convergence
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Dependent Dirichlet Process for Multiple
Object Tracking
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DDP Prior Construction at time k

Construct a dependent Dirichlet process prior as follows:

(C1) The `th object is assigned to one of the survived and transitioned clusters from
time (k − 1) which is occupied by at least one of the previous `− 1 previous
objects. The object selects one of these clusters with probability:

Number of objects at jth cluster at time k Number of objects after transitioningat ith cluster

Π1
j ,k(Choosing jth cluster|θ`−1

1,k ) ∝ [Vk ]j +

Dk−1∑
i=1

[
Vk|k−1

]
i
λi ,k|k−1 δi (cj ,k)

Cluster indicator λi,k|k−1 ∈ {0, 1} Cluster assignment

where the normalizing constant is (`− 1) +
`−1∑
j

Dk−1∑
i=1

[
Vk|k−1

]
i
λi ,k|k−1δi (cj ,k) + α
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Cont’d

(C2) The `th object is assigned to one of the survived and transitioned clusters from
time (k − 1). However, this cluster has not yet been assigned to any of the first
`− 1 objects. The object selects such a cluster with probability:

Π2
j ,k(Choosing jth cluster that has not been selected yet|θ`−1

1,k ) ∝
Dk−1∑
i=1

[
Vk|k−1

]
i
λi ,k|k−1δi (cj ,k)

The cluster parameter θ?`,k−1 transitions with transition kernel ν(θ?`,k−1, ·)
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Cont’d

(C3) The object does not belong to any of the existing clusters; a new cluster
parameter is drawn with probability:

Hyper-parameter

Π3
k(Creating new cluster|θ`−1

1,k ) ∝ α

A new cluster parameter is drawn from the base distribution

(Moraffah & Papandreou 2018)

10 / 61



Is the marginal distribution a Dirichlet Process?

Theorem

Suppose that the space of state parameters is Polish. The dependent Dirichlet process
in C1-C3 define a Dirichlet process at each time step given the previous time
configurations, i.e.,

Ek |Ek−1 ∼ DP
(
α,
∑
Θk

Π1
`,kδθ`,k

+
∑

Θ?
k|k−1

\Θk

Π2
`,kν(θ?

`,k−1,θ`,k)δθ`,k
+ Π3

kH
)

(Moraffah & Papandreou 2018, 2019)
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Density Estimation

Theorem

Assume that the space of object state parameters is separable and complete. Given the
past configurations, the state distribution is

p(x`,k |x`−1
1,k ,Xk|k−1,Θ

?
k|k−1,Θk) =


Qθ(x`,k−1, x`,k )f (x`,k |θ?`,k ) w.p. C1

Qθ(x`,k−1, x`,k )ν(θ?`,k−1,θ`,k )f (x`,k |θ?`,k ) w.p. C2∫
θ
f (x`,k |θ)dH(θ) w.p. C3

for some density f .

This method is called Dependent Dirichlet Process-Evolutionary Markov Modeling
(DDP-EMM)

(Moraffah & Papandreou 2018, 2019)
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Learning Model

Upon receiving Zk = {zl ,k , l = 1, . . . ,Mk} at time k

Update our belief and learn using p(zl ,k |θ`,k , x`,k) is drawn from to the following
hierarchy:

θ`,k ∼ DDP-EMM(α,H)

x`,k | θ?`,k ∼ F (θ?`,k)

zl ,k |θ?`,k , x`,k ∼ R(zl ,k |θ?`,k , x`,k)

for some distribution R

How to find the posterior distribution? How to do inference?
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Bayesian Inference: Gibbs Sampler

Predictive Distribution: The Bayesian posterior can be solved through the
following:

P(x`,k |Zk) =

∫
θ
P(x`,k |Zk ,θ)dG (θ|Zk)

where

P(x`,k |Zk ,θ) = P(x`,k |θ)

P(x`,k |Θ) =

∫
P(x`,k |θ`,k)dπ(θ`,k |Θ)

and the posterior distribution π(θ`,k |Θ) is given by

π(θ`,k |Θ) =
∑

θ∈Θk−{θ`,k}
Π1
j,kδθ(θ`,k ) +

∑
θ∈Θ?

k|k−1\Θ

θ 6=θ`,k

Π2
j,kν(θ?`,k−1,θ`,k )δθ(θ`,k ) + Π3

kH(θ`,k )

How to compute G (θ|Zk)? → Direct computation is expensive → Gibbs sampling
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Cont’d

Theorem

(Gibbs Sampler) In the hierarchical model the conditional posterior distribution is given
by

θ`,k | θ−`,k ,Zk ∼
|Ck |∑
j=1

ζj,k δθj,k
(θ`,k ) +

Dk|k−1∑
j=1
j /∈Ck

βj,k Kj,k (θ`,k ) + γ`,k H`(θ`,k ),

where θ−`,k by convention is the set {θj ,k , j 6= `}, where

ζj,k =

[Vk ]j +

Dk|k−1∑
i=1

[
Vk|k−1

]
i
λi,k|k−1δi (cj,k )

(`− 1) +
∑Dk|k−1

i=1

[
Vk|k−1

]
i
λi,k|k−1 + α

R(z`,k |xj,k , θj,k ), βj,k =

Dk|k−1∑
i=1

i /∈Ck

[
Vk|k−1

]
j
λj,k|k−1

(`− 1) +
∑Dk|k−1

i=1

[
Vk|k−1

]
i
λi,k|k−1 + α

|Ck |∑
j=1

ζj,k +

Dk|k−1∑
j=1

j /∈Ck

βj,k + γ`,k = 1

Kj,k = R(z`,k |xj,k ,θj,k) and dH`(θ) ∝ R(z`,k |xj,k ,θ)dH(θ), H: base distribution on θ.
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Properties of the Model

At each time step, convergence to the posterior distribution Pθ(·|Zk) does not
depend on the starting value and almost surely converges in total variation norm

The posterior is weakly/strongly consistent

Due to Markov property of the process the EPPF on the partition on Nk and
(Nk − 1) objects given the configuration at time (k − 1) satisfies

pNk−1([Vk ]?1 , . . . , [Vk ]?Dk
) =

Dk∑
j=1

pNk
([Vk ]?1 , . . . , [Vk ]?j + 1, . . . [Vk ]?Dk

) + pNk
([Vk ]?1 , . . . , [Vk ]?Dk

, 1)

Assuming the Holder space Hκ([0, 1]nz ), under some mild condition contraction

rate is n−
κ

2κ+nz , which matches the optimal frequentist rate

( Moraffah & Papandreou 2019)
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Example 1: Comparison to LMB Tracker

Actual and estimated x (top) and
y(bottom) position versus time k using
DDP-EMM and LMB methods
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tracking 10 objects
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OSPA Comparison to LMB Tracker
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Example 2: DDP-EMM under Different SNRs
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Dependent Pitman-Yor Process for
Multiple Object Tracking
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Why Dependent Pitman-Yor processes?

α = 10 and for d = 0.9, d = 0.5, and
d = 0

Object state benefits from a larger
number of available clusters to
capture full dependency → More
plausible to have less popular clusters
→ Pitman-Yor process follows the
power law

Rich gets richer

DPY-STP to model a collection of
random distributions that are related
but not identical

DP PY

Number of unique cluster

in N points O(α logN) O(αNb)
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Dependent Pitman-Yor Modeling for MOT: DPY-STP Construction

Construct a dependent Pitman-Yor process prior as follows:

(C1) The `th object belongs to one of the survived and transitioned clusters from time
(k − 1) and occupied at least by one of the previous `− 1 objects. The object
selects one of these clusters with probability:

Γ1
j,k (Choosing jth cluster|θ`−1

1,k ) ∝
Dk−1∑
i=1

[
V?k|k−1

]
i
ηi,k|k−1δi (cj,k ) + [Vk ]j − d

Normalizing constant :
`−1∑
j=1

Dk−1∑
i=1

[
V?

k|k−1

]
i
ηi ,k|k−1δi (cj ,k) +

`−1∑
j=1

[Vk ]j + α

(0 ≤ d < 1 and α > −d are the discount and strength parameters in the
Pitman-Yor process, respectively)
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Cont’d

(C2) The `th object belongs to one of the survived and transitioned clusters from time
(k − 1) but this cluster has not yet been occupied by any one the first
`− 1objects. The object selects such a cluster with probability:

Γ2
j,k (jth cluster not been selected yet|θ1,k , . . . ,θ`−1,k ) ∝

Dk−1∑
i=1

[
V?k|k−1

]
i
ηi,k|k−1δi (cj,k )− d

`th survived object parameter at time (k − 1) evolves according to a transition kernel:
θ`,k ∼ ζ(θ?`,k−1, ·)
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Cont’d

(C3) The object does not belong to any of the existing clusters, thus a new cluster
parameter is drawn from some base distribution H, corresponding to the base
distribution in Pitman-Yor process, with probability:

Γ3
k(Creating new cluster|θ1(k), . . . ,θ`−1(k)) ∝ |Dk |`−1d + α

|Dk |`−1: total number of unique clusters at time k created by the first (`− 1)
objects
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Is the marginal distribution a Pitman-Yor?

Theorem

Suppose that the space of state parameters is separable and complete metrizable
space. This process defines a Pitman-Yor process at each time step given the previous
time configurations, i.e.,

DPY-STPk |DPY-STPk−1 ∼ PY
(
d , α,

∑
Θk

Γ1
j,kδθ`,k

+
∑

Θ?
k|k−1

\Θk

Γ2
j,kζ(θ?`k−1,θ`,k )δθ`,k

+ Γ3
kH
)

(Moraffah & Papandreou 2019)
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Density Estimation

Given previous Theorem, we provide an object density estimator.

Theorem

Assume the space of states, X , is separable and complete metrizable topological space.
Given Equations in cases C1-C3, distribution over states follows:

p(x`,k |x1,k , . . . , x`−1,k ,Xk|k−1,Θ
?
k|k−1,Θk) =


Qθ(x`,k−1, x`,k )f (x`,k |θ?`,k ) If C1

Qθ(x`,k−1, x`,k )ζ(θ?`,k−1,θ
?
`,k )f (x`,k |θ?` (k)) If C2∫

θ
f (x`,k |θ)dH(θ) If C3

for some density f (·|θ), distribution H on parameters, and Xk|k−1 the set of survived
state objects.
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Bayesian Inference and Learning

Upon receiving Zk = {zl ,k , l = 1, . . . ,Mk}
at time k

Update our belief and learn using
p(zl ,k |θ`,k , x`,k) is drawn from to the
following hierarchy:

x`,k |x1,k , . . . , x`−1,k ,Xk|k−1,Θk ∼ DPY-STP

zl ,k |x`,k ,θ?`,k ∼ R(zl ,k |x`,k ,θ?`,k)

for some distribution R

How to find the posterior distribution?
How to do inference?

Graphical model representing this
procedure from time (k − 1) to k
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Inference: Gibbs Sampler

Ck = {c1,k , . . . , cNk ,k} : Cluster indicator at time k

ci,k = cj,k if and only if θi,k = θj,k

ci,k = ` if and only if θi,k = θ?
`,k

Ck provides a partition on {1, . . . ,Nk}
Successive conditional Blackwell-MacQueen distribution:

θ`,k |Θ ∼
∑

Θk−{θ`,k}

Γ1
j ,kδθ(θ`,k) +

∑
θ∈Θ?

k|k−1
\Θ

θ 6=θ`,k

Γ2
j ,kν(θ?`,k−1,θ`,k)δθ(θ`,k) + Γ3

kH(θ`,k)
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Cont’d

Theorem

Suppose the base measure is nonatomic, the required conditional distribution to do
local inference is derived by marginalizing over the mixing measures:

p(ci ,k = `|Ck \ {ci ,k},Zk , rest) ∝
Γ1,−i
`,k R(zl ,k |x`,k ,θ?`,k) for cluster ` that has been selected

Γ2,−i
`,k R(zl ,k |x`,k ,θ?`,k) for cluster ` that has not yet been selected

Γ3,−i
k

∫
R(zl ,k |x`,k ,θ)dH(θ) new cluster is created
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Cont’d

How to find Γ1,−i
`,k , Γ2,−i

`,k , and Γ3,−i
`,k ?

Γ1,−i
`,k =

[
Dk−1∑
j=1

[
V?
k|k−1

]
j
ηj,k|k−1δj (c`,k ) + [Vk ]`

]
−i

− d[
`−1∑
t=1

Dk−1∑
j=1

[
V?
k|k−1

]
j
ηj,k|k−1δj (ct,k ) +

`−1∑
t=1

[Vk ]t

]
−i

+ α

Γ2,−i
`,k =

[
Dk−1∑
j=1

[
V?
k|k−1

]
j
ηj,k|k−1δj (c`,k )

]
−i

− d[
`−1∑
t=1

Dk−1∑
j=1

[
V?
k|k−1

]
j
ηj,k|k−1δj (ct,k ) +

`−1∑
t=1

[Vk ]t

]
−i

+ α

Γ3,−i
k =

|Dk |−id + α[
`−1∑
t=1

Dk−1∑
j=1

[
V?
k|k−1

]
j
ηj,k|k−1δj (ct,k ) +

`−1∑
t=1

[Vk ]t

]
−i

+ α

(Moraffah & Papandreou 2019)
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Posterior Consistency of DPY-STP

Under strict conditions the posterior distribution is consistent

Most of discrete nonparametric prior (with the exception of the Dirichlet process)
are inconsistent

When discrete nonparametric priors are used in hierarchical mixture models, the
generally lead to a consistent density estimator

(Lijoi, et.al 2008, 2010, Moraffah & Papandreou 2019)
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Example 1: Comparison to LMB Tracker

Multi Object Tracking via DDP-STP for Five Moving Objects
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step k for five objects
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Cont’d: Performance
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Example 2: Comparison to DDP-EMM for 10 Moving Objects
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Cont’d: OSPA Comparison
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What Have We Done and What Will Be
Done?
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What Have We Done?

Introduce two class of dependent nonparametric models for multi object tracking
problem to model object evolution

Determine the object identity
Estimate the object trajectory as well as object cardinality

Proposed models that perform well under uncertainties

Proposed simple MCMC model for Bayesian inference

Showed consistency of the posterior under introduced prior

Showed contraction rate of posterior matches the minimax rate

Compared the performance of proposed methods to one another and also other
existing methods
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Work to Be Done before Defense

A. Infinite Random Tree for Multiple Object Tracking
Modeling uncertainty over trees; path/branch generated by diffusion process
(generate samples using Brownian motion at t = 0 )
Branching probability: probability of selecting a branch vs diverging, depends on
number of samples previously followed same branch
Dependent as prior can incorporate time-dependent learned information

Place a dependent Diffusion process on parameters
Tree leaf/node: object state, branch: cluster of states in a hierarchy
Find trajectory of each object by tracing path on tree
Predict and update number of objects at each time

Goal: Introduce a dependent nonparametric model over infinite random trees that can
robustly estimate the object trajectory as well as object cardinality

(Moraffah& Papandreou 2019)
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Work to Be Done before Defense

B. Single Object Tracking with Dependent Measurements

Big picture: Challenges and Solutions:

Problem Statement: Single object tracking problem when multiple measurements are
collected from multiple sensor
Challenge:

I Association
I How to use the dependency among measurements to track accurately

Solution: Group measurements

How to group measurements so that

(1) Dependency among measurement is held?
(2) Sensor information is preserved?

Solution: Hierarchical Dirichlet process mixture model
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Work to Be Done before Defense

C. Multiple Object Tracking with Dependent Measurements
Single object tracking models may not be applied
Generalize the DDP-EMM multi object tracking model to multiple dependent sensors
Algorithms should be cable of the following via dependent measurements

Dealing with unknown time-dependent object and measurement cardinality
Robustly identifying the object identities

Model Description:

a. Prior construction over object states
b. Bayesian Inference
c. Posterior through an MCMC approach
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Future Work

Use nonparametric models to address other problems in tracking such as high
clutter

Exploit nonparametric models for spawning

Nonparametric models and causation

Employ introduced models in other problem such as pattern recognition and
image segmentations

Utilize nonparametric models in health problems such as finding pattern in DNA
structure
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Appendix

Appendix
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Bayesian Nonparametrics
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Bayesian parametric vs. Bayesian nonparametric Models

Parametric model Nonparametric model

Nonparametric does not mean no parameter; means cannot be described by a finite set
of parameters.

No free lunch: Cannot learn from data unless some assumptions are made (less
constraints than parametric models).
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Motivation for Bayesian Nonparametrics

A theoretical motivation: de Finetti’s Theorem −→ Nonparametric prior

Definition

A sequence of random variables is infinitely exchangeable if the distribution is
invariant for any finite sequence, i.e., for any n and permutation σ

P(X1 ∈ A1, . . . ,Xn ∈ An) = P(Xσ(1) ∈ A1, . . . ,Xσ(n) ∈ An)

Theorem

(de Finetti’s Theorem) A sequence X1,X2, . . . is infinitely exchangeable iff for all n
and some distribution G

P(X1 ∈ A1, . . . ,Xn ∈ An) =

∫
θ

n∏
j=1

P(Xj ∈ Aj |θ)G (dθ)
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Dirichlet Process

The most popular nonparametric prior distribution over measures

Can be viewed as the extension of finite mixture models for density estimation

Can be derived from different ways:

1. Ferguson definition of Dirichlet process (Ferguson 1973)
2. Stick-breaking process (Sethuraman 1994)
3. Chinese restaurant process (Aldous 1985)
4. Blackwell-MacQueen process (Pólya urn scheme) (Blackwell 1975)
5. Dirichlet process and Lévy processes (Gamma Processes)
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Ferguson’s Definition of Dirichlet Process

Definition

Dirichlet process is a random probability measure over the space Θ satisfying:

Let A1, . . . ,An be a partition of the Polish space Θ, and G ∼ DP(α,H) be a
realization of a Dirichlet process with concentration parameter α, and base
distribution H, then

(i) G is a random measure
(ii) G is discrete with probability one
(iii) The vector (G (A1), . . . ,G (An)) is a probability vector
(iv) The marginal distribution of (G (A1), . . . ,G (An)) is Dirichlet(αH(A1), . . . , αH(An))
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A Constructive Method: Stick-Breaking Construction

• The definition of Dirichlet process is not handy!

• To summarize a method to draw from Dirichlet process, stick breaking process is introduced(Sethuraman 1994)

Definition

Stick-breaking Construction: To draw a single distribution G from a DP(α,H),

θj
i .i .d .∼ H, πj ∼ GEM(α), G =

∞∑
j=1

πjδθj

Griffiths-Engen-McCloskey (GEM)
distribution:

π′j
i .i .d .∼ Beta(1, α)

πj = π′j

j−1∏
i=1

(1− π′i )
48 / 61



Cont’d

A draw from a Dirichlet process is always atomic and
∑
j

πj = 1

The weights πj are decreasing on average but not strictly
Poisson-Dirichlet process(Kingman 1975) gives an ordering (not computationally
tractable)
A draw from Dirichlet process is discrete with probability one
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Posterior Dirichlet Process

Let G ∼ DP(α,H)

Assume θj
i .i .d .∼ G for j = 1, . . . , n

Then the posterior distribution given θj ’s is a Dirichlet process

G |θ1, . . . ,θn ∼ DP(α + n,

∑n
j=1 δθj

+ αH

α + n
)
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Dirichlet Process as a Clustering Method

Consider set [n] = {1, 2, . . . , n}
Let G ∼ DP(α,H)

Assume θj
i .i .d .∼ G for j = 1, 2, . . . (may be repeated)

Assume θ1, . . . ,θn takes K distinct values (K < n) =⇒ θ?1, . . . ,θ
?
K

K distinct values defines a partition on [n] such that j ∈ Ck iff θj = θ?k

The induced distribution over all partitions is called Chinese restaurant
process(CRP) (Aldous 1985. Pitman 2006).
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Chinese Restaurant Process

CRP(α) is a distribution over partitions, i.e., ρ ∼ CRP(α)

Each customer comes into the restaurant and picks a table at random:

P(Choose table C) =
nC

α +
∑

ρ nC
P(Choose a new table) =

α

α +
∑

ρ nC

Preferential attachment: Rich gets richer

CRP is exchangeable (not de Finetti exchangeable) and the induced distribution
over partitions(no labeling) is called exchangeable partition probability function
(EPPF) :

P(n1, . . . , nK |α) =
αK

α[n]

∏
j

(nj − 1)!

α[n] = α(1 + α) . . . (α + n − 1)
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How to Relate a Exchangeable Partition to a Exchangeable Sequence

CRP is an exchangeable random partition not an exchangeable sequence.

Construct a random partition as follows:
• For each C ∈ ρ define θ?

C ∼ H
• For each j ∈ [n] define θj = θ?

C

where C ∈ ρ and j ∈ C. θ1,θ2, . . . are de Finetti exchangeable

What is the underlying distribution G that makes them i.i.d.?
Answer: Dirichlet Process!
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Properties of Dirichlet Process

• DP is discrete with probability one

• DP has atomic distribution G =
∞∑
j=1

πjθ
?
j

• A random sequence can be constructed in the following way

ρ ∼ CRP(α)

θ?C ∼ H for each C ∈ ρ
θ?j = θ?C for each j ∈ [n], C ∈ ρ, j ∈ C

E[G (A)] = H(A)

Var [G (A)] =
H(A)(1− H(A))

α + 1
E[K |α, n] = α log n
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Dirichlet Process Mixture Model

Dirichlet process is not an appropriate prior for density estimation

Let X1, . . . ,Xn ∼ F ,

G |α,H ∼ DP(α,H)

θj |G
i .i .d .∼ G

Xj |θj ∼ f (·|θj)

for some probability density function f .

Use MCMC methods to find posterior

The beauty of this model is that due to the discreteness of G , a
clustering method is induced. In other words, we have implicitly
created a prior on K , the number of distinct θj .

H

G α

θi

Xj

n
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Cont’d

Marginalize G out:

Let X1, . . . ,Xn ∼ F ,

π|α ∼ GEM(α)

θj |H
i .i .d .∼ H

zj |π ∼ Cat(π)

Xj |Θ, zj ∼ f (·|θzj )

for some probability density function f .

Use MCMC methods to find posterior

H

θj

πα

zj

Xj
∞

n
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Hierarchical Dirichlet Process

Hierarchical modeling models shared
statistical dependence

Used for topic modeling

A hierarchy of Dirichlet processes

G0 ∼ DP(γ,H)

Gm|G0 ∼ DP(αm,G0)

θj ,m|Gm ∼ Gm

A hierarchical Dirichlet process
mixture can be obtained as follows

Xj ,m|θj ,m ∼ f (·|θj ,m)

CRP −→ Chinese restaurant franchise
(CRF) (Teh et.al. 2006)

H

G0 γ

G1 G2

θj,1 θj,2

α1 α2

Xj,1 Xj,2

n1 n2
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Pitman-Yor Process

Two parameter CRP: CRP([n], d , α) with concentration parameter α and discount
parameter d over all partitions( α > −d , 0 ≤ d < 1)

P(Choose table C) =
nC − d

α +
∑

ρ nC
P(Choose a new table) =

α + d |ρ|
α +

∑
ρ nC

Two parameter CRP is exchangeable therefore there is an underlying de Finetti
distribution such that the data are independent. The de Finetti measure is
Pitman-Yor process (Pitman & Yor 1997, Perman et.al. 1992)

Pitman-Yor process is a generalization of Dirichlet process
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Properties of Pitman-Yor Processes

Bigger d tends to have more tables with few customers

Rich gets richer: with more occupied tables, chance of even more tables becomes
higher

Tables with small occupancy numbers tend to have lower chance of getting new
customers

E[K |α, n] = αnb =⇒ Power law property of Pitman-Yor process (Goldwater
2005 &Teh 2006)

DP PY

Number of unique cluster

in n observation O(α log n) O(αnb)
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Dirichlet Process vs. Pitman-Yor Process

α = 10 and for d = 0.9, d = 0.5, and d = 0
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Cont’d

Pitman-Yor process follows Zipf’s law!1

(Wood et.al, 2011)
1Picture is taken from Teh 2013
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