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Problem Formulation and Challenges

Problem Statement: Multi-object tracking
(MOT) aims to jointly estimate the
number of objects and path, location,
characteristics of objects from sensor data

@ Each object may leave or stay in the
field of view with a time dependent
probability and transition to next time
according to a transition probability
kernel

@ Each survived object transitions to the
next time according to a transition
kernel

@ New objects can join the scene at
random

@ Object cardinality is unknown

Challenges:

@ Unknown time-varying number of
objects

@ Robustly associate objects at each
time step

@ Uncertainty on parameters such as
measurement noise or clutter

observation space

observation set
produced by targets

b SE
= H state space

target motion

Stagets Stargets
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Multiple Object Tracking Model

Motion Model
@ Each existing object xy x—1 may
® leave the scene w.p. 1 — Py \,_1
® stay in the scene w.p. Py «_1 and transition to the next time using transition
probability kernel Qg(x¢ k-1, ")

@ A random number of new objects can appear from random locations in the state
space

Measurement Model
e Each object x; s generates an observation z; s with likelihood p(z x|x¢ «)
Tasks:
A. Construct a prior to capture the dependency among the objects — Prior

B. Estimate trajectory — Inference
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Related Work

Object tracking has been studied in various ways:
1. Bayesian methods for a single object tracking

» Kalman filter, Particle filter, The interacting multiple model for maneuvering, The
nearest neighbor for tracking, The probabilistic data association filter

2. Random finite set theory for multi object tracking

» Multiple hypothesis tracking filter, Joint probability data association filter,
Probability hypothesis density filter, Labeled multi-Bernoulli filter, Generalized
labeled multi-Bernoulli filter

3. Deep Learning models for multi object tracking

» Deep affinity network for multiple object tracking, Deep network flow for multi
object tracking , Data association for multi object tracking via deep neural networks

4. Bayesian nonparametrics for tracking

» Evolutionary Clustering, Dynamic Clustering, Bayesian inference for linear dynamic
model through Dirichlet processes, Hierarchical Dirichlet process for maneuvering
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Contributions

Bayesian Nonparametric Modeling for Multiple Object Tracking:

@ Dependent Bayesian nonparametric models as a prior on object states

m (a) Survival (b) Birth, and (c) Death

m Adjust the probabilities among new and transitioned objects

m Dependent models to update object cardinality and posterior distribution

m Simple inferential methods such as MCMC and VB

m Captures full dependency with a well known nonparametric marginal distribution
@ Achieve higher estimation accuracy and lower computational cost at lower SNR

values

o Consistent dependent process

@ Achieve optimal frequentist minimax rate of convergence
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Dependent Dirichlet Process for Multiple
Object Tracking



DDP Prior Construction at time k

@ Construct a dependent Dirichlet process prior as follows:

(C1) The ¢th object is assigned to one of the survived and transitioned clusters from
time (k — 1) which is occupied by at least one of the previous ¢ — 1 previous
objects. The object selects one of these clusters with probability:

Number of objects at jth cluster at time k Number of objects after transitioningat ith cluster

Di_1 /

ﬂj{k(Choosingjth cIuster|0§;(1)o< [Vk]j + Z [Vk‘kfl] Aikik—1 0i(jk)

i

i:l/ f
Cluster indicator A; ;1 € {0,1} Cluster assignment

¢—1 Dr—1
where the normalizing constant is (/ — 1) + Z Z [Vk‘k,ﬂ ; i k|k—16i(Cj k) +
j =1
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(C2) The fth object is assigned to one of the survived and transitioned clusters from
time (k — 1). However, this cluster has not yet been assigned to any of the first
f — 1 objects. The object selects such a cluster with probability:

Dy—1
I_I_]z,k (Choosingjth cluster that has not been selected yet| 0?;{1) X E [ Vk‘k_]_] i )\i,kl k— ]_(Si(C:j,k)
i=1

m The cluster parameter 02,(_1 transitions with transition kernel 1/(02,(_1, 9
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(C3) The object does not belong to any of the existing clusters; a new cluster
parameter is drawn with probability:

Hyper-parameter

N3 (Creating new cluster|01i;(1) X

m A new cluster parameter is drawn from the base distribution

(Moraffah & Papandreou 2018)
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Is the marginal distribution a Dirichlet Process?

Theorem

Suppose that the space of state parameters is Polish. The dependent Dirichlet process
in CI1-C3 define a Dirichlet process at each time step given the previous time
configurations, i.e.,

Ek|Ek—1 ~ DP <aa Z n%,k(s‘%,k + Z n%,ky(ezk—la el,k)(saz,k + niH)
Ok GZM71\ek

(Moraffah & Papandreou 2018, 2019)
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Density Estimation

Assume that the space of object state parameters is separable and complete. Given the
past configurations, the state distribution is

Qe (xe,k—1, %e,k)f (Xe,k |67 1) w.p. C1
P(Xe,k\xi_klaXk|k—17@z|k_1>@k) = { Qo(xek—1,%e,1)V(07 k1, 00,6)f (X607 ) w.p. C2
’ /f(xe,kw)dH(e) w.p. C3

2]

for some density f.

This method is called Dependent Dirichlet Process-Evolutionary Markov Modeling
(DDP-EMM)

(Moraffah & Papandreou 2018, 2019) 12/61



Learning Model

Upon receiving Zx = {z;,, I =1,..., M} at time k
e Update our belief and learn using p(z; «|@¢ k, X¢ k) is drawn from to the following
hierarchy:

0/« ~ DDP-EMM(«, H)
Xtk | OZk ~ F(OZk)

2/ k107 s Xk ~ R(z)k

07 k> Xe.k)
for some distribution R

How to find the posterior distribution? How to do inference?
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Bayesian Inference: Gibbs Sampler

@ Predictive Distribution: The Bayesian posterior can be solved through the
following:

P(Xg7k|Zk):/P(Xg7k|zk,0)dG(0|Zk)
o

where

P(Xg7k|Zk,0) = P(Xg,kw)
P(Xg7k|@):/P(Xg7k|0&k)d7'r(0g7k|@)

and the posterior distribution 7(6y|©) is given by

m(0ekl®) = > N Se(0c)+ D N7,w(07 4 1,00k)00(0ck) + MEH(O,k)
0c0,—{6, «} 0€0;,_1\®
0#£6, «

@ How to compute G(0|2,)? — Direct computation is expensive — Gibbs sampling
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(Gibbs Sampler) In the hierarchical model the conditional posterior distribution is given

by
|Ckl Dyjk—1
00k | 0 ¢k, 2k NZCj,k d6; ,(Oe,k) + Z Bk Kjk(Oe,k) + e,k He(Or k),
= =
J¢Ck

where 6_, ;. by convention is the set {0}y, j # {}, where

Dijk—1
Dyjk—1 > [Vk\k—1],>\j,k|k—1
Vi + X [Vk|k—1].)‘i,k\k—léi(cj,k) =1 J
= i igCy
Gk = D1 R(zg, k% k> €j,k) Bjk = Ty
t-1)+3>_ {Vk|k—1]i>‘i,k\k—1+°‘ (e-1)+3,- [Vk\k—1]/,/\i,k|k—1 + o
|Ckl Dyjk—1
DGkt D Biktrex=1
j=1 j=1
JECy

Kj’k = R(Zg,k|Xj’k, 0j,k) and ng(H) X R(Zg7k|Xj7k, 0)dH(0), H: base distribution on 6.
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Properties of the Model

@ At each time step, convergence to the posterior distribution Py(-|Z) does not
depend on the starting value and almost surely converges in total variation norm

@ The posterior is weakly/strongly consistent

@ Due to Markov property of the process the EPPF on the partition on Ny and
(Ni — 1) objects given the configuration at time (k — 1) satisfies

Dy
-1 (VAT s IVADD) = D P (Valt o IVAlF + 1, VDD, + e (VDT -5 [VadD, 5 1)
j=1

e Assuming the Holder space ([0, 1]™), under some mild condition contraction
rate is n 2=+, which matches the optimal frequentist rate

( Moraffah & Papandreou 2019)
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Example 1: Comparison to LMB Tracker

x-position, 10 targets
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Actual and estimated x (top) and Comparison between cardinality estimation

y(bottom) position versus time k using for DDP (t L LME (bott )
DDP-EMM and LMB methods or DDP (top) an (bottom) when
tracking 10 objects
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OSPA Comparison to LMB Tracker
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Example 2: DDP-EMM under Different SNRs

DDP-EMM performance for SNR = —3 dB, SNR = —5 dB, and SNR = —10 dB
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Dependent Pitman-Yor Process for
Multiple Object Tracking



Why Dependent Pitman-Yor processes?

@ Object state benefits from a larger

0 | number of available clusters to
capture full dependency — More
plausible to have less popular clusters
— Pitman-Yor process follows the

02 power law

# tables
proportion of tables with 1 customer

@ Rich gets richer

#customers #customers @ DPY-STP to model a collection of
random distributions that are related
o« =10 and for d = 0.9, d = 0.5, and but not identical
d=0
DP PY

Number of unique cluster
in N points O(alogN)  O(aNP)

21/61



Dependent Pitman-Yor Modeling for MOT: DPY-STP Construction

@ Construct a dependent Pitman-Yor process prior as follows:

(C1) The fth object belongs to one of the survived and transitioned clusters from time
(k — 1) and occupied at least by one of the previous ¢ — 1 objects. The object
selects one of these clusters with probability:

Dy—1

r}’k(Choosing jth cluster|0f,_kl) o Z [v:|k—1] . i k| k—10i () + [Vi]; — d
i=1

—1 Dy -1
Normalizing constant : Zl Zl { k‘kfl} / Nikk—10i(Cj k) + Zl [Vi]; +
J=1i j=

(0 < d < 1anda> —d are the discount and strength parameters in the
Pitman-Yor process, respectively)
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(C2) The fth object belongs to one of the survived and transitioned clusters from time
(k — 1) but this cluster has not yet been occupied by any one the first
¢ — lobjects. The object selects such a cluster with probability:

Dy—1
Fﬁk(jth cluster not been selected yet|0q j,...,0p_1 k) o Z [VZ\k—l]ini,k\kfléi(cj,k) —d

i=1

(th survived object parameter at time (k — 1) evolves according to a transition kernel:
aé,k ~ C(Oqua )
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(C3) The object does not belong to any of the existing clusters, thus a new cluster
parameter is drawn from some base distribution H, corresponding to the base
distribution in Pitman-Yor process, with probability:

ri(Creating new cIuster|01(k), e 05_1(1()) X |Dk|g_1d + «

|Dile—1: total number of unique clusters at time k created by the first (¢ — 1)
objects
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Is the marginal distribution a Pitman-Yor?

Theorem

Suppose that the space of state parameters is separable and complete metrizable

space. This process defines a Pitman-Yor process at each time step given the previous
time configurations, i.e.,

DIPTSR (DIPVES T 0 TP (d,a, Z r},kéee,k + Z rf',kC(OEk—u 92,k)5913,k + riH)
o ©F—1\Ox

(Moraffah & Papandreou 2019)
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Density Estimation

Given previous Theorem, we provide an object density estimator.

Theorem

Assume the space of states, X, is separable and complete metrizable topological space.
Given Equations in cases C1-C3, distribution over states follows:

Qo (xe,k—15%e,k)f (%0, k107 &) If C1
P(Xe,k X1k - - - s Xe—1,ks k1, @Z‘k_b O = Qo (xe,k—1,%,k)S(07 k—1, 07 ik ) (xe,k|07 (K))  If C2
F(x¢.4|0)dH(8) If C3

)

for some density f(-|0), distribution H on parameters, and X,,_1 the set of survived
state objects.
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Bayesian Inference and Learning

Upon receiving Zx = {z;, I =1,..., My}
at time k

o Update our belief and learn using
P(z1,k|0¢,k, % k) is drawn from to the
following hierarchy:

Xok|X1 ks -+ s Xe—1,k5 Xik—1, Ok ~ DPY-STP

) k%, 07 ~ R(z1 klx,k, 07 1)

for some distribution R

Graphical model representing this
procedure from time (k — 1) to k

How to find the posterior distribution?
How to do inference?
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Inference: Gibbs Sampler

o Ck ={c1k, ... cn, k} : Cluster indicator at time k
B Gk = Gk if and onIy if 9,',;( = 01-’,(
m ¢, =(ifand only if 0, =67,
m Ci provides a partition on {1,..., Nx}

@ Successive conditional Blackwell-MacQueen distribution:

0ukl®~ D Thde(0u)+ D T24v(6]k-1,00k)00(00k) +TEH(O1 k)
Ok—{0ex} 0€0;,_1\@
0704
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Theorem

Suppose the base measure is nonatomic, the required conditional distribution to do
local inference is derived by marginalizing over the mixing measures:

p(C,'J( = £|Ck \ {C;7k}, Z,, rest) X

er_i R(z/ k%0 92 ) for cluster ¢ that has been selected
r?:k—’ R(zik|xek, 07 1) for cluster ¢ that has not yet been selected
r%_i R(z/ k|xek,0)dH(6) new cluster is created
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How to find [y, ", T3 7, and 572

Dr—1
[21 [ Klk— 1] Ny kik—19(cex) + Vil | —d
. = .
rl’_l = —i
Lk £—1Dk—1 —1
> X [ k|k_1].771,k|k—15j(€?t,k)+ > V| +a
t=1 j= J t=1 i
Dy—1
z% [VﬁM44] nj,k|k—19j(ce,k)
, =
|—2,—I _
Lk £—1Dk—1
> 2. [Vlt|k71]-njyk|k*15j(ct,k) Z[Vk] +o
t=1 j=1 J t=1 w
3 |D|—id + o
W=
=17k -1
[Z Z [ Klk— 1] Mke=105(Cer) + 20 Vide| - +a
t=1 j=1 t= .

(Moraffah & Papandreou 2019)
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Posterior Consistency of DPY-STP

@ Under strict conditions the posterior distribution is consistent

@ Most of discrete nonparametric prior (with the exception of the Dirichlet process)
are inconsistent

@ When discrete nonparametric priors are used in hierarchical mixture models, the
generally lead to a consistent density estimator

(Lijoi, et.al 2008, 2010, Moraffah & Papandreou 2019)
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Example 1: Comparison to LMB Tracker

Multi Object Tracking via DDP-STP for Five Moving Objects

2000

1000 b2

1000

2000

2000

1500 =
£ 1000

500

True and estimated (a) x-coordinate and (b) y-coordinate as a function of the time
step k for five objects
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Cont'd: Performance
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Example 2: Comparison to DDP-EMM for 10 Moving Objects

-5TP ordinates using DDP-EMM
T T T T T T T T T T

Actual and estimated x and y coordinates Actual and estimated x and y coordinates
through DPY-STP through DDP-EMM
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Cont'd: OSPA Comparison
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What Have We Done and What Will Be
Done?



What Have We Done?

@ Introduce two class of dependent nonparametric models for multi object tracking
problem to model object evolution

o Determine the object identity
e Estimate the object trajectory as well as object cardinality

@ Proposed models that perform well under uncertainties

@ Proposed simple MCMC model for Bayesian inference

@ Showed consistency of the posterior under introduced prior

@ Showed contraction rate of posterior matches the minimax rate

@ Compared the performance of proposed methods to one another and also other
existing methods
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Work to Be Done before Defense

A. Infinite Random Tree for Multiple Object Tracking

o Modeling uncertainty over trees; path/branch generated by diffusion process
(generate samples using Brownian motion at t = 0 )

e Branching probability: probability of selecting a branch vs diverging, depends on
number of samples previously followed same branch

e Dependent as prior can incorporate time-dependent learned information

m Place a dependent Diffusion process on parameters

Tree leaf/node: object state, branch: cluster of states in a hierarchy

Find trajectory of each object by tracing path on tree

Predict and update number of objects at each time

Goal: Introduce a dependent nonparametric model over infinite random trees that can
robustly estimate the object trajectory as well as object cardinality

(Moraffah& Papandreou 2019)
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Work to Be Done before Defense

B. Single Object Tracking with Dependent Measurements

Big picture: Challenges and Solutions:

e Problem Statement: Single object tracking problem when multiple measurements are
collected from multiple sensor
o Challenge:

> Association
»> How to use the dependency among measurements to track accurately

e Solution: Group measurements
How to group measurements so that
(1) Dependency among measurement is held?
(2) Sensor information is preserved?

Solution: Hierarchical Dirichlet process mixture model
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Work to Be Done before Defense

C. Multiple Object Tracking with Dependent Measurements

o Single object tracking models may not be applied
e Generalize the DDP-EMM multi object tracking model to multiple dependent sensors
e Algorithms should be cable of the following via dependent measurements
m Dealing with unknown time-dependent object and measurement cardinality
m Robustly identifying the object identities
e Model Description:
a. Prior construction over object states
b. Bayesian Inference
c. Posterior through an MCMC approach
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@ Use nonparametric models to address other problems in tracking such as high
clutter

@ Exploit nonparametric models for spawning
@ Nonparametric models and causation

@ Employ introduced models in other problem such as pattern recognition and
image segmentations

o Utilize nonparametric models in health problems such as finding pattern in DNA
structure
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Appendix
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Bayesian Nonparametrics
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Bayesian parametric vs. Bayesian nonparametric Models

Parametric model Nonparametric model

Nonparametric does not mean no parameter; means cannot be described by a finite set
of parameters.

No free lunch: Cannot learn from data unless some assumptions are made (less
constraints than parametric models).
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Motivation for Bayesian Nonparametrics

@ A theoretical motivation: de Finetti's Theorem — Nonparametric prior

A sequence of random variables is infinitely exchangeable if the distribution is
invariant for any finite sequence, i.e., for any n and permutation o

P(X1 €A,.... Xy € A,,) = P(Xa(l) S Al,...,XU(n) S A,,)

Theorem

(de Finetti’'s Theorem) A sequence X1, Xa, ... is infinitely exchangeable iff for all n
and some distribution G

n
P(X1 € A1,.... X, € Ay) = / [1PX; € Aj16)G(d0)
[
Jj=1
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Dirichlet Process

@ The most popular nonparametric prior distribution over measures
@ Can be viewed as the extension of finite mixture models for density estimation
@ Can be derived from different ways:
1. Ferguson definition of Dirichlet process (Ferguson 1973)
Stick-breaking process (Sethuraman 1994)
Chinese restaurant process (Aldous 1985)

Blackwell-MacQueen process (Pdlya urn scheme) (Blackwell 1975)
Dirichlet process and Lévy processes (Gamma Processes)

SARE IR BN
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Ferguson's Definition of Dirichlet Process

Definition
Dirichlet process is a random probability measure over the space © satisfying:

o Let Aj,..., A, be a partition of the Polish space ©, and G ~ DP(«, H) be a
realization of a Dirichlet process with concentration parameter «, and base
distribution H, then

(i) G is a random measure

(ii) G is discrete with probability one

(iii) The vector (G(A1),...,G(A,)) is a probability vector

(iv) The marginal distribution of (G(A1),..., G(A,)) is Dirichlet(aH(A1), ..., aH(A,))

A4
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A Constructive Method: Stick-Breaking Construction

® The definition of Dirichlet process is not handy!
® To summarize a method to draw from Dirichlet process, stick breaking process is introduced(Sethuraman 1994)
Stick-breaking Construction: To draw a single distribution G from a DP(«, H),

mji~GEM(a), G = mdy,
j=1

g, Hid 1y
i~
Griffiths-Engen-McCloskey (GEM)
distribution: B 1B,
yi.d.d o :7(_3[". LB, i
m; '~ Beta(l,a) "B 1B
j—-1 . Igl 18.,
/ 1
(1 - 7TI) '_7;[L':'
© 48 /61



@ A draw from a Dirichlet process is always atomic and ij =1

@ The weights 7; are decreasing on average but not strictjly

@ Poisson-Dirichlet process(Kingman 1975) gives an ordering (not computationally
tractable)

@ A draw from Dirichlet process is discrete with probability one

040 Dirichlet Process Prior Sample with N(0,1) Base Measure: alpha = 10
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Posterior Dirichlet Process

o Let G ~ DP(a, H)

@ Assume 6; ENale forj=1,...,n

@ Then the posterior distribution given ;s is a Dirichlet process

2}7:1 (591. +aH

G|61,...,0, ~ DP(a+ n, g
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Dirichlet Process as a Clustering Method

Consider set [n] = {1,2,...,n}
Let G ~ DP(«, H)

]

Assume 6; E e for j =1,2,... (may be repeated)
Assume 01, ..., 0, takes K distinct values (K < n) = 67,...,0%
K distinct values defines a partition on [n] such that j € Cy iff ; = 67

The induced distribution over all partitions is called Chinese restaurant
process(CRP) (Aldous 1985. Pitman 2006).
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Chinese Restaurant Process
91010 Q

CRP(«) is a distribution over partitions, i.e., p ~ CRP(«

Each customer comes into the restaurant and picks a table at random:

n Q@
S P(Choose a new table) = —————
o+ Zp ne o+ Zp ne

Preferential attachment: Rich gets richer

P(Choose table C) =

CRP is exchangeable (not de Finetti exchangeable) and the induced distribution
over partitions(no labeling) is called exchangeable partition probability function

(EPPF) :
JP’(nl,.. nK|a [] H

ol =a(140)...(a+n-1)
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How to Relate a Exchangeable Partition to a Exchangeable Sequence

@ CRP is an exchangeable random partition not an exchangeable sequence.
@ Construct a random partition as follows:

® For each C € p define 3 ~ H
® For each j € [n] define 6; = 67,

where C € pand j € C. 01,05,... are de Finetti exchangeable

@ What is the underlying distribution G that makes them i.i.d.?
Answer: Dirichlet Process!

53 /61



Properties of Dirichlet Process

® DP is discrete with probability one

o
® DP has atomic distribution G = ijﬂj
j=1
A random sequence can be constructed in the following way

p ~ CRP(«a)
0; ~ H foreachC € p
07 =0; foreachje[n],Cep,jeC

E[G(A)] = H(A)
H(A)(1 - H(A))

e Var[G(A)] = o

E[K|a, n] = alogn
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Dirichlet Process Mixture Model

@ Dirichlet process is not an appropriate prior for density estimation
o Let Xq,..., X, ~ F,

G|a, H ~ DP(a, H)

X;0; ~ £(-16;)

for some probability density function f.
@ Use MCMC methods to find posterior

@ The beauty of this model is that due to the discreteness of G, a
clustering method is induced. In other words, we have implicitly
created a prior on K, the number of distinct 6;.

& —@
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@ Marginalize G out:

QLetXl,..-,XnNF, @ 6
7|l ~ GEM(«) H
iid.
0;|H "~ H e
Zj’ﬂ' ~ Cat(ﬂ') @
Xj|@,Zj ~ f(\OZJ)
(©.9]
for some probability density function f. @
LY

@ Use MCMC methods to find posterior
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Hierarchical Dirichlet Process

@ Hierarchical modeling models shared
statistical dependence 0

@ Used for topic modeling

@ A hierarchy of Dirichlet processes @

GO ~ DP(77 H)
Gm‘Go ~ DP(Oém, Go)
0; m|Gm ~ Gm o —(G)

. . .. e N e N
@ A hierarchical Dirichlet process
mixture can be obtained as follows @

az

Xjml0jm ~ f(:|0;m)

@ CRP — Chinese restaurant franchise @
(CRF) (Teh et.al. 2006) . m)
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1 2 5
OI01I0I0

e Two parameter CRP: CRP([n], d, «) with concentration parameter « and discount
parameter d over all partitions( @ > —d,0 < d < 1)

P(Choose table C) = aicﬁ P(Choose a new table) = M
pl€ p e

@ Two parameter CRP is exchangeable therefore there is an underlying de Finetti
distribution such that the data are independent. The de Finetti measure is
Pitman-Yor process (Pitman & Yor 1997, Perman et.al. 1992)

@ Pitman-Yor process is a generalization of Dirichlet process
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Properties of Pitman-Yor Processes

@ Bigger d tends to have more tables with few customers

@ Rich gets richer: with more occupied tables, chance of even more tables becomes
higher

@ Tables with small occupancy numbers tend to have lower chance of getting new
customers

o E[K|o,n] = an® = Power law property of Pitman-Yor process (Goldwater
2005 &Teh 2006)

DP PY

Number of unique cluster
in n observation O(alogn) O(an®)
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Dirichlet Process vs. Pitman-Yor Process
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Pitman-Yor process follows Zipf's law!!

!picture is taken from Teh 2013

(Wood et.al, 2011)
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