00000	0000000

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Information-Theoretic Private Interactive Mechanism

Bahman Moraffah Lalitha Sankar

Allerton Conference on Communication, Control, and Computing September 10, 2015

Private Interactive Mechanism B. Mor

B. Moraffah, L. Sankar

KSU SCHOOL OF ELECTRICAL ENGINEERING

Outline

Introduction

- Motivation
- Problem Description and Literature Review

2 Private Interactive Mechanism

- System Model
- Interaction Reduces Leakage: Illustration
- Gaussian Sources: Interactive Mechanism

Private Interactive Mechanism under Log-Loss Distortion

- Leakage-Distortion Region under Log-Loss
- Interaction under Log-loss: Agglomerative Approach
- Gaussian Sources Under Log-Loss Distortion
- Illustration of Results

Conclusions

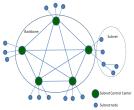
イロト イロト イヨト イヨ

duction			
000			

Motivation

Intro

- Many distributed systems need to exchange data amongst different agents (e.g., electric power systems).
- Data sharing critical for high fidelity estimation.
- However, sharing often inhibited due to privacy/ trust/ security constraints.
- Competitive Privacy:¹ Can data be shared so as to reveal specific public features of data while keeping the leakage of private features minimal?



• Determine privacy-guaranteed interactive data sharing information-theoretic mechanisms.

¹L. Sankar, S. Kar, R. Tandon, H.V. Poor, "Competitive privacy in the smart grid", Smart Grid Communications (SmartGridComm), IEEE International Conference on, 2011

Introduction	
0000	

Problem Description

- Consider a two agent setup where each agent has public and private data.
- Goal is to minimize the leakage of private data while ensuring the fidelity of public data over multiple rounds.
- Develop leakage-distortion tradeoff for interactive setting for various distributions and distortion measures.

Literature Review: Utility-Privacy Tradeoff

One-shot data publishing setting:

- Sankar et. al.² introduced an information-theoretic formulation of the utility-privacy tradeoff problem.
- Utility modeled as distortion and privacy captured via a mutual information based leakage.
- Database modeled as an n-length sequence from an i.i.d source.
- Utility-privacy tradeoff captured by the set of achievable distortion-leakage tuples.

Interactive setting:

- Sankar et. al.³ consider a two-agent setup with Gaussian distributed correlated observations at each agent.
- Optimal utility-privacy tradeoff region shown to be achieved by a Gaussian privacy mechanism.
- Focus of this talk is on the interactive setting with general distributions and distortions.

²L. Sankar, S. Rajagopalan, and H. V. Poor, "Utility-privacy tradeoffs in databases: An information theoretic approach" Information forensics and security, IEEE transaction on , vol. 8, no. 6 June 2013

³L. Sankar, S. Kar, R. Tandon, H.V. Poor, "Competitive privacy in the smart grid", Smart Grid Communications (SmartGridComm), IEEE International Conference on, 2011

Introduction	
00000	

Literature Review: Relationship to Interactive Source Coding:

- Utility-privacy tradeoff problem does not involve encoders and decoders.
- Mutual information used as a measure of information leakage.
 - Thus, leakage-distortion optimizations have a flavor of rate-distortion optimizations.
- Much work on interactive source coding problem by Kaspi⁴ and Ma et. al..⁵

⁴A. Kaspi, "Two-way source coding with fidelity criterion" Information theory, IEEE Transaction on, vol 31 no. 6, Nov 1985,

⁵N. Ma, P. Ishwar, P. Gupta, "Interactive source coding for function computation in collocated networks" Information theory, IEEE Transaction on, vol 58, no. 7,2012.

Literature Review: Information Bottleneck

Information Bottleneck

- Goal is to minimize the compression rate of public data subject to constraint on the log-loss distortion of private data.⁶
- In our problem we minimize information leakage of the private feature while lower bounding the (mutual) information of the public feature.

One-way non-interactive setting

- Under log-loss distortion and mutual information leakage Makhdoumi *et. al.*⁷ developed tradeoff region.
- Use an algorithm based on the agglomerative information bottleneck algorithm.

We generalize an algorithmic solution and highlight the advantages of multiple rounds of data sharing to reduce leakage.

⁶N. Tishby, F. Pereira, and, W. Bialek, "The information bottleneck method" DBLP: journals/corr/physics-004057.2000. ⁷A. Makhdoumi, S. Salamatian, N. Fawaz, and, M. Medard, "From the information bottleneck to the privacy funnel, Information Theory Workshop(ITW), 2014 IEEE, Nov 2014, pp.501-505".

	Private Interactive Mechanism	
	0000000	
System M	odel	

- Consider a two-way interactive model, where agents *A* and *B* generate *n*-length i.i.d. sequences (X_1^n, Y_1^n) and (X_2^n, Y_2^n) , respectively.
- The public data at both agents are denoted by $X_{(\cdot)}^n$ and the correlated private data by $Y_{(\cdot)}^n$.

$$\underbrace{(X_1,Y_1)}_{\mathsf{Agent A}} \overbrace{P_{U_2|U_1,X_2}}^{P_{U_2|U_1,X_2}} \overbrace{\mathsf{Agent B}}^{P_{U_2|U_1,X_2}} \overbrace{\mathsf{Agent B}}^{(X_2,Y_2)}$$

• Without loss of generality, we assume that agent A initiates the interaction and *K* is even.

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

K-interactive Privacy Mechanism

Definition

A *K*-interactive privacy mechanism $(n, K, \{P_{1i}\}_{i=1}^{K/2}, \{P_{2i}\}_{i=1}^{K/2}, D_1, D_2, L_1, L_2)$ is a collection of *K* probabilistic mappings such that agent A shares data in the odd rounds beginning with round 1 and agent B shares in the even rounds such that:

$$\begin{cases} P_{11}: \mathcal{X}_1^n \to \mathcal{U}_1^n \\ P_{1,\frac{i+1}{2}}: (\mathcal{X}_1^n, \mathcal{U}_1^n, \mathcal{U}_2^n, \dots, \mathcal{U}_{i-1}^n) \to \mathcal{U}_i^n & \text{for } i = 3, 5, \dots, K-1 \\ P_{2,\frac{i}{2}}: (\mathcal{X}_2^n, \mathcal{U}_1^n, \dots, \mathcal{U}_{i-1}^n) \to \mathcal{U}_i^n & \text{for } i = 2, 4, \dots, K \end{cases}$$

At the end of *K*-rounds *A* and *B* reconstruct sequences \hat{X}_{1}^{n} and \hat{X}_{1}^{n} , respectively, where $\hat{X}_{1}^{n} = g_{2}(X_{2}^{n}, U_{1}^{n}, \dots, U_{K}^{n})$ and $\hat{X}_{2}^{n} = g_{1}(X_{1}^{n}, U_{1}^{n}, \dots, U_{K}^{n})$, and g_{1} and g_{2} are appropriately chosen functions.

A D F A B F A B F A B F

Private Interactive Mechanism	
0000000	

Cont'd.

The set of K/2 mechanism pairs $\{P_{1j}, P_{2j}\}_{j=1}^{\frac{K}{2}}$ is chosen to satisfy

$$\frac{1}{n} \sum_{i=1}^{\infty} E(d_1(X_{1i}, \hat{X}_{1i})) \le D_1 + \epsilon$$
$$\frac{1}{n} \sum_{i=1}^{\infty} E(d_2(X_{2i}, \hat{X}_{2i})) \le D_2 + \epsilon$$
$$\frac{1}{n} I(Y_1^n; U_1^n, \dots, U_K^n, X_2^n) \le L_1 + \epsilon$$
$$\frac{1}{n} I(Y_2^n; U_1^n, \dots, U_K^n, X_1^n) \le L_2 + \epsilon$$

where $d_1(\cdot, \cdot)$ and $d_2(\cdot, \cdot)$ are the given distortion measures.

ヘロト 人間 トメヨトメヨト

Ξ

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Leakage-Distortion Region Theorem

Theorem

For target distortion pair (D_1, D_2) , and for a K-round mechanism the leakage-distortion region is given as

$$\begin{aligned} \{(L_1, L_2, D_1, D_2) : L_1 &\geq I(Y_1; U_1, \dots, U_K, X_2), \\ L_2 &\geq I(Y_2; U_1, \dots, U_K, X_1), \\ E(d_1(X_1, \hat{X}_1)) &\leq D_1, \\ E(d_2(X_2, \hat{X}_2)) &\leq D_2 \end{aligned}$$

such that for all k, the following Markov chains hold:

$$Y_1 \leftrightarrow (U_1, \dots, U_{2k-1}, X_2) \leftrightarrow U_{2k}$$
$$Y_2 \leftrightarrow (U_1, \dots, U_{2k-2}, X_1) \leftrightarrow U_{2k-1}$$

with $|\mathcal{U}_l| \leq |\mathcal{X}_{i_l}| \cdot (\prod_{i=1}^{l-1} |\mathcal{U}_i|) + 1$ where $i_l = 1$ if l is odd and $i_l = 2$ if l is even.

イロト 不得 トイヨト イヨト

Introduction	

Conclusions

Sum Leakage-Distortion Function

• Assume interaction from agent A such that the last round of interaction is from agent B to agent A.

Definition

Define a compact subset of a finite Euclidean space as

$$\begin{aligned} \mathcal{P}_{K}^{A} := & \{ P_{U^{K}|X_{1},Y_{1},X_{2},Y_{2}} : P_{U^{K}|X_{1},Y_{1},X_{2},Y_{2}} = P_{U_{1}|X_{1}}P_{U_{2}|U_{1},X_{2}} \dots, P_{U_{K}|U^{K-1},X_{2}}, \\ & E(d_{1}(X_{1},\hat{X}_{1})) \leq D_{1}, E(d_{1}(X_{2},\hat{X}_{2})) \leq D_{2} \} \end{aligned}$$

Definition

The sum leakage-distortion function from agent A over K rounds is

$$L^{A}_{sum,K}(D_{1},D_{2}) = \min_{P_{U^{K}|X_{1},Y_{1},X_{2},Y_{2}} \in \mathcal{P}^{A}_{K}} \{I(Y_{1};U_{1},\ldots,U_{K},X_{2}) + I(Y_{2};U_{1},\ldots,U_{K},X_{1})\}.$$

Introduction

Private Interactive Mechanism

Conclusions

Interaction Reduces Leakage: Illustration

- Let (X_1, X_2) be a DSBS(p) with $P_{X_1, X_2}(0, 0) = P_{X_1, X_2}(1, 1) = \frac{1-p}{2}$ and $P_{X_1, X_2}(1, 0) = P_{X_1, X_2}(0, 1) = \frac{p}{2}$.
- (X_1, Y_1) and (X_2, Y_2) are correlated as follows:

$$\begin{aligned} Y_1 &= X_1 + Z_1 \qquad Z_1 \sim Ber(p) \\ Y_2 &= X_2 + Z_2 \qquad Z_2 \sim Ber(p) \end{aligned}$$

and Z_1 and Z_2 are independent of X_1 and X_2 .

• Let $d_A = 0$ and consider an erasure distortion measure $d_B(\cdot, \cdot)$ as:

$$d_B(x_1, \hat{x}_1) = \begin{cases} 0, & \text{if } \hat{x}_1 = x_1 \\ 1, & \text{if } \hat{x}_1 = e \\ \infty, & \text{if } \hat{x}_1 = 1 - x_1. \end{cases}$$

Theorem

With one round from agent A to agent B, the optimal solution is

$$L^{A}_{sum,1}(0, D_2) = 2 - [(1 - D_2)H(p) + (1 + D_2)H(2p(1 - p))].$$

	Private Interactive Mechanism	
	00000000	
Sum Leak	age for $K = 2$	

- Consider the sum leakage-distortion for for two-round of interaction starting from agent B in round 1 and returning from A to B in round 2, K = 2.
- Set the conditional distribution $P_{U_1|X_2}$ as a $BSC(\alpha)$ and $P_{U_2|X_1,U_1}$ as in the following table and let $\hat{X}_1 = U_2$.

$P_{U_2 X_1,U_1}$	$u_2 = 0$	$u_2 = e$	$u_2 = 1$
$x_1=0, u_1=0$	$1 - \beta$	β	0
$x_1 = 1, u_1 = 0$	0	1	0
$x_1 = 0, u_1 = 1$	0	1	0
$x_1 = 1, u_1 = 1$	0	β	$1 - \beta$

- For p = 0.03, $\alpha = 0.35$, and $\beta = 0.55$, $L^{B}_{sum,2}(0, D_2) = I(Y_2; U_1, X_1) + I(Y_1; U_2|U_1, X_2) = 1.1876$
- Corresponding distortion is $D_2 = E(d(X_1, \hat{X}_1)) = 0.8116$.
- By comparison, the one-round setting for this distortion is $L_{sum,1}^{A}(0, 0.8116) = 1.3832$.

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Gaussian Sources: Interactive Mechanism

- Consider $(X_1, Y_1) \sim N(0, \Sigma_{X_1, Y_1}), (X_2, Y_2) \sim N(0, \Sigma_{X_2, Y_2}), \text{ and } (X_1, X_2) \sim N(0, \Sigma_{X_1, X_2}).$
- For jointly Gaussian sources subject to mean square error distortion constraints, one round of interaction suffices to achieve the Leakage-distortion bound.

Theorem

For the private interactive mechanism, the leakage-distortion region under mean square error distortion constraints consist of all tuples (L_1, L_2, D_1, D_2) satisfying

$$\begin{split} L_{1} &\geq \frac{1}{2}\log(\frac{\sigma_{Y_{1}}^{2}}{\alpha^{2}D_{1} + \sigma_{Y_{1}|X_{1},X_{2}}^{2}})\\ L_{2} &\geq \frac{1}{2}\log(\frac{\sigma_{Y_{2}}^{2}}{\beta^{2}D_{2} + \sigma_{Y_{2}|X_{1},X_{2}}^{2}})\\ \end{split}$$
where $\alpha = \frac{cov(X_{1},Y_{1})}{\sigma_{Y_{1}}^{2}}$ and $\beta = \frac{cov(X_{2},Y_{2})}{\sigma_{Y_{2}}^{2}}$.

Introduction	

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Leakage-Distortion Region under Log-Loss Distortion

Theorem

For the K-round interaction mechanism the leakage-distortion region under log-loss distortion, is given by:

$$\{(L_1, L_2, D_1, D_2) : L_1 \ge I(Y_1; U_1, \dots, U_K, X_2), \\ L_2 \ge I(Y_2; U_1, \dots, U_K, X_1), \\ D_1 \ge H(X_1 | U_1, \dots, U_K, X_2) \\ D_2 \ge H(X_2 | U_1, \dots, U_K, X_1)\}.$$

• Distortion bounds in leakage-distortion region under log loss distortion can be rewritten as:

$$egin{aligned} & \mathcal{U}(X_1; U_1, \ldots, U_K, X_2) \geq au_1 \ & \mathcal{U}(X_2; U_1, \ldots, U_K, X_1) \geq au_2. \end{aligned}$$

- The optimization problem is not convex because of the non-convexity of the feasible region.
- Problem closely related (an interactive version) to the information bottleneck problem.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

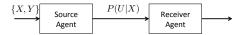
		Private Interactive Mechanism under Log-Loss Distortion			
		0000000000			
Sum-Leak	Sum-Leakage vs. Distortion under Log-loss				

• Recall: K-round sum leakage under log-loss:

$$\begin{array}{ll} \underset{\{P_{1k}, P_{2k}\}_{k=1}^{K/2}}{\text{minimize}} & \sum_{i,j=1, i \neq j}^{2} I(Y_i; U_1, ..., U_K, X_j) \\ \text{subject to} & , I(X_1; U_1, ...U_K, X_2) \geq \tau_1 \\ & I(X_2; U_1, ...U_K, X_1) \geq \tau_2. \end{array}$$

• Simplest version of interactive privacy problem: K=1 (non-interactive) with $X_2 = Y_2 = \emptyset$.

$$\min_{P(U|X):I(X;U)\geq\tau}I(Y;U).$$



• Makhdoumi et. al. refer to the optimization problem as privacy funnel.⁸

⁸A. Makhdoumi, S. Salamatian, N. Fawaz, and, M. Medard, "From the information bottleneck to the privacy funnel, Information Theory Workshop(ITW), 2014 IEEE, Nov 2014, pp.501-505 ".

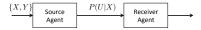
Sum-Leakage vs. Distortion under Log-loss: Privacy Funnel

- Privacy funnel is dual of information bottleneck problem.
- Information bottleneck problem is a well-studied problem introduced by Tishby.⁹
- Can Information bottleneck problem be generalized to interactive setting and applied?

⁹N. Tishby, F. Pereira, and, W. Bialek, "The information bottleneck method" DBLP: journals/corr/physics-004057.2000.

	n Bottleneck	
00000	0000000	000000000000
	Private Interactive Mechanism	Private Interactive Mechanism under Log-Loss

• A single-source agent and single-receive agent setting $(X_2 = \emptyset \text{ and } Y_2 = \emptyset)$.



The information bottleneck problem minimizes the compression rate between X and U, while preserving a measure of the average information between U and Y such that Y ↔ X ↔ U forms a Markov chain

$$\min_{P(U|X):I(Y;U)\geq\tau}I(X;U).$$

• Agglomerative Information bottleneck algorithm is a method to construct a locally optimal solution. In this method, compression rate is minimized by reducing the cardinality of U.

イロト イポト イヨト イヨト

s Distortion

Agglomerative Information Bottleneck Method

- Agglomerative Information bottleneck algorithm is a method to construct a locally optimal solution.¹⁰ In this method, compression rate is minimized by reducing the cardinality of \mathcal{U} . propose an *agglomerative* algorithm.
- It begins with $\mathcal{U} = \mathcal{X}$ and reduces the cardinality of U until the constraints on both X and Y are satisfied.
- Slonim *et. al.* proved this algorithm converges to a local minima of the optimization problem.
- Makhdoumi *et. al.* applied the agglomerative information bottleneck algorithm to privacy funnel problem.

¹⁰N. Slonim and N. Tishby, "Agglomerative information bottleneck", Proc. of Neural Information Processing System(NIPS-99)1999.

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Agglomerative Information Bottleneck Method

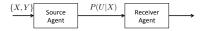
Agglomerative Information Bottleneck

Algorithm 1: Agglomerative information bottleneck algorithm **Input:** τ and $P_{X,Y}$ 1: **Initialization:** $\mathcal{X} = \mathcal{U}$ and $P_{U|X}(U|X) = \mathbf{1}_{\{\mathbf{n}=\mathbf{x}\}}$ while there exist *i'* and *j'* such that $I(Y; U^{i'-j'}) > \tau$ do among 2: those i', j', let 3: $\{u_i, u_i\} = argmaxI(X; U) - I(X; U^{i'-j'})$ 4: 5: Merge $\{u_i, u_i\} \rightarrow u_{ii}$ Update $\mathcal{U} = \{\mathcal{U} - \{u_i, u_i\}\} \cup \{u_{ii}\}$ and $P_{U|X}$ 6: 7: Output $P_{II|X}$

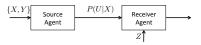
• Let U^{i-j} be the resulting U from merging u_i and u_j according to $P(u_{ij}|x) = P(u_i|x) + P(u_j|x)$.

イロト 不得 トイヨト イヨト 二日

• Agglomerative algorithm is known for the non-interactive setting (K=1) without correlated side information at receiver agent.



• What if receiver agent has side information?

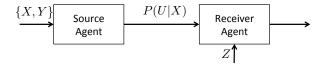


- How can agglomerative algorithm be applied?
- This is the first step to develop an algorithm for an interactive setting.
- Recall: The iterative setting involves multiple rounds and in each round we transmit to a receiver agent with correlated side information.

Merge and Search Algorithm		
		000000000000
		Private Interactive Mechanism under Log-Loss Distortion

- Consider a one-round setting (K = 1) with side information at receiver agent.
- The sum-leakage optimization problem under log-loss is given by:

$$\min_{P(U|X)} I(Y; U, Z) \quad \text{s.t.} \quad I(X; U, Z) \geq \tau_1$$



- Relative to agglomerative information bottleneck problem: here U is replaced by the tuple (U, Z) and P(U|X) by P(U, Z|X) = P(U|X)P(Z|X).
- Merge-and-search algorithm: In the *k*-th iteration, indices *i* and *j* are chosen such that $I(X; U_{ij}^k, Z) \ge \tau_1$ where U_{ij}^k is the resulting from merging u_i and u_j while maximizing $I(Y; U^{k-1}|Z) I(Y; U_{ij}^k|Z)$ where U^{k-1} is the output of the algorithm in round (k-1).

Agglomerative Iterative Algorithm for K = 2

- Consider the two-round setting (K = 2).
- By using merge-and-search algorithm iteratively the mechanism (P_{11}, P_{21}) can be found.
- In the first round, for a point-to-point setting with side information X_2 , the distribution $P_{U_1|X_1}$ can be found.
- In the second round, the cardinality of U_2 is reduced to decrease $I(Y_2; U_1, U_2, X_1)$ using P_{U_1, X_1} computed during the first round. This reduction is computed by merging elements of U_2 conditioned on U_1 and X_2 .

イロト 不得 トイヨト イヨト

00000	

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Agglomerative Iterative Algorithm

Algorithm: Agglomerative Iterative Algorithm For k = 1, ..., K/2**R(2k-1)**: min $I(Y_1; X_2, U_1, \ldots, U_{2k-2}, U_{2k-1})$ over $P(U_{2k-1}|X_2, U_1, \ldots, U_{2k-2})$ s.t. $I(X_1; U_{2k_1}|X_2, U_1, \ldots, U_{2k-2}) > \tau_{2k-1}$ **Input (2k-1):** $P(X_1, Y_1)$, $P(U_{2k-2}, \ldots, U_1, X_1, X_2)$, τ_{2k-1} Apply the merge-and-search algorithm to find local optimum. **Output (2k-1):** $P(U_{2k-1}|X_1, X_2, U_1, \ldots, U_{2k-2})$ **R(2k)**: min $I(Y_2; X_1, U_1, \ldots, U_{2k-1}, U_{2k})$ over $P(U_{2k}|X_1, U_1, \ldots, U_{2k-1})$ s.t. $I(X_2; U_{2k}|X_1, U_1, \ldots, U_{2k-1}) > \tau_{2k}$ **Input (2k):** $P(X_2, Y_2)$, $P(U_{2k-1}, \ldots, U_1, X_1, X_2)$, τ_{2k} Apply the merge-and-search algorithm to find local optimum. **Output (2k):** $P(U_{2k}|X_1, X_2, U_1, \ldots, U_{2k-1})$ **Output :** $P(U_1|X_1), \ldots, P(U_K|U_1, \ldots, U_{K-1}, X_2)$

<ロト < 四ト < 三ト < 三ト

		Private Interactive Mechanism under Log-Loss Distortion	
		000000000000000000000000000000000000000	
Gaussian Sources Under Log-Loss Distortion			

• Tishby *et. al.* proved the mapping $P_{U|X}$ that minimizes the information bottleneck problem for jointly Gaussian sources is Gaussian.¹¹

 $\min_{\substack{P_{U|X} \\ Y \leftrightarrow X \leftrightarrow U}} I(X; U)$ subject to $I(Y; U) \ge \tau.$

• For the non-interactive (one-way) single source and single receiver agent setting with the leakage-distortion tradeoff, the optimal leakage-minimizing mechanism is Gaussian.

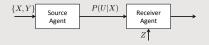
 $\min_{\substack{P_{U|X} \\ Y \leftrightarrow X \leftrightarrow U}} I(Y; U)$ subject to $I(X; U) \ge \tau.$

¹¹G. Chechik, A. Globerson, N. Tishby, and, Y. Weiss, "The information bottleneck for Gaussian variables" In journal of Machine Learning Research/2004.

		Private Interactive Mechanism under Log-Loss Distortion	
		000000000000000000000000000000000000000	
Optimality of a One-Round Gaussian Private Interactive Mechanism			

Lemma

Suppose (X, Y) and (X, Z) are jointly Gaussian and let $P_{U|X}$ be a privacy mechanism such that $U \leftrightarrow X \leftrightarrow Z$ forms a Markov chain. The optimal mechanism $P_{U|X}$ minimizing I(Y; U, Z)subject to $I(X; U, Z) > \tau$ is Gaussian.



Theorem

Consider a two-agent interactive setting with log-loss distortion and jointly Gaussian sources. The optimal leakage-distortion region can be achieved in one round of interaction.

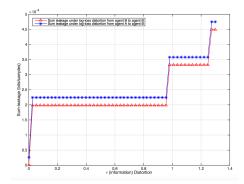
Introduction 00000 Private Interactive Mechanism

Private Interactive Mechanism under Log-Loss Distortion

Conclusions

Illustration of the Results

- The US Census dataset is a sample of US population from 1994. *X*₁ =(age, gender), *X*₂ = (ethnicity, gender), *Y*₁ =(work class), and, *Y*₂ =(income level).
- Find the optimal solution by using agglomerative interactive privacy algorithm and compute sum leakage for the two round and the one round interactive mechanism under log-loss distortion at agent B.
- Let $d_A = 0$ and d_B be the log-loss distortion measure.
- The blue curve with stars is the leakage for one round from A to B. The red curve with triangles denotes the sum leakage starting from B to A and back to B.



イロト イロト イヨト

SCHOOL OF ELECTRICAL ENGINEERING

Conclusion	с.	

- A K-round private interactive mechanism between two agents with correlated sources was introduced, and the leakage-distortion region for general distortion functions was determined.
- A K-round private interactive mechanism under log-loss distortion was introduced.
- Sum leakage under log loss distortion and an algorithm to find an optimal mechanism for that were introduced.

イロト 不得 トイヨト イヨト

SCHOOL OF ELECTRICAL ENGINEERING

Conclusions