Some Results on Source Coding Problem with Privacy Condition

Bahman Moraffah
Department of Electrical Engineering
Arizona State University
Tempe, AZ, USA

July 21, 2014

Abstract

This article presents one-way source coding problem with additional condition on source output[1], Wyner-Ziv problem with additional output to be kept private from receivers[2] and finally find region for two-way communication systems with additional conditions on sources output at both locations. The region for above cases will be introduced such that they satisfy distortion prescription and equivocation constraints.

keywords: Rate-Distortion theory, Wyner-Ziv Problem, Kaspi Problem, Equivocation.

1 Introduction

Let us consider a source coding problem. The systems that will be considered are one-way and two-way communication systems with correlated sources. We go over one-way communication systems and Wyner-Ziv which have been introduced in [1],[2], then generalize the results to interactive source coding.In this article entropy or equivalently mutual information is considered as a measure of privacy.It is shown [4] interaction might help in this sense that by increasing the number of messages we can achieve less sum-rate. We show interaction might help to achieve more equivocation through an example. Let $\left\{X_{k}, X_{k}^{\prime}\right\}_{k=1}^{\infty}$ be a sequence of i.i.d.
random variables where $X_{k}=\left(X_{k_{r}}, X_{k_{h}}\right)$ and $X_{k}^{\prime}=\left(X_{k_{r}}^{\prime}, X_{k_{h}}^{\prime}\right)$ taking values in finite sets. The communication system in figure[1] will be analyzed.

Figure 1: Two-way source coding scheme
Where other source output at each node must be kept private.

2 Formal Statement of The Problem and The Results

Let $\left\{\left(X_{k_{r_{k}}}, X_{k_{h_{k}}}\right),\left(X^{\prime}{ }_{k_{r_{k}}}, X^{\prime}{ }_{k_{h_{k}}}\right)\right\}_{k=1}^{\infty}$ be a sequence of i.i.d. random variables taking values in finite set $\mathcal{X}_{k_{r}}, \mathcal{X}_{k_{h}}, \mathcal{X}^{\prime}{ }_{k_{r}}, \mathcal{X}^{\prime}{ }_{k_{r}} . A\left(n, t,\left\{e_{i}\right\}_{i=1}^{t}, g_{A}, g_{B}, D, D^{\prime}, e, e^{\prime}\right)$ equivocation - distortion code consists of

$$
\begin{array}{cc}
e_{j}: \mathcal{X}_{k_{r}} * \mathcal{X}_{k_{h}} \bigotimes_{i=1}^{j-1} \mathcal{M}_{i} \rightarrow \mathcal{M}_{j} & j: \text { odd } \\
e_{j}: \mathcal{X}_{k_{r}}^{\prime} * \mathcal{X}_{k_{h}}^{\prime} \bigotimes_{i=1}^{j-1} \mathcal{M}_{i} \rightarrow \mathcal{M}_{j} & j: \text { even } \\
g_{A}: \mathcal{X}_{k_{r}} * \mathcal{X}_{k_{h}} \bigotimes_{i=1}^{t} \mathcal{M}_{i} \rightarrow \mathcal{X}_{k_{r}}^{\prime} & \tag{3}
\end{array}
$$

$$
\begin{equation*}
g_{B}: \mathcal{X}_{k_{r}}^{\prime} * \mathcal{X}_{k_{h}}^{\prime} \bigotimes_{i=1}^{t} \mathcal{M}_{i} \rightarrow \mathcal{X}_{k_{r}} \tag{4}
\end{equation*}
$$

where $\mathcal{M}_{i}=\left\{1,2, \ldots, M_{i}\right\}$ The average distortion of the code is given by

$$
\begin{aligned}
\Delta_{x} & =E\left(\frac{1}{n} \sum_{k=1}^{n} d_{x}\left(X_{k_{r_{k}}}, \hat{X}_{k_{r_{k}}}\right)\right) \\
\Delta_{x^{\prime}} & =E\left(\frac{1}{n} \sum_{k=1}^{n} d_{x^{\prime}}\left(X_{k_{r_{k}}}^{\prime}, \hat{X}_{k_{r_{k}}}^{\prime}\right)\right)
\end{aligned}
$$

where $d_{x}, d_{x^{\prime}}$ are per-letter distortion measure and measure of privacy is equivocation rate

$$
\begin{aligned}
\Delta E_{1} & =\frac{1}{n} H\left(X_{k_{h}}^{n} \mid M^{t}, X_{k_{r}}^{\prime n} X_{k_{h}}^{\prime n}\right) \\
\Delta E_{2} & =\frac{1}{n} H\left(X_{k_{h}}^{\prime n} \mid M^{t}, X_{k_{r}}^{n}, X_{k_{h}}^{n}\right)
\end{aligned}
$$

$\left(R_{1}, R_{2}, D, D^{\prime}, e, e^{\prime}\right)$ is achievable if there exists a $\left(n, t,\left\{e_{i}\right\}_{i=1}^{t}, g_{A}, g_{B}, D, D^{\prime}, e, e^{\prime}\right)$ code such that for any $\epsilon>0$ and sufficiently large $\mathrm{n}, \frac{1}{n} \log \left(\left|\mathcal{M}_{j}\right|\right) \leq R_{j}+\epsilon \mathrm{j}=$ $1, \ldots, t$

$$
\begin{aligned}
& R_{1 \rightarrow 2}=\sum_{j: o d d} R_{j} \\
& R_{2 \rightarrow 1}=\sum_{j: \text { even }} R_{j} \\
& \Delta_{x} \leq D+\epsilon \\
& \Delta_{x^{\prime}} \leq D^{\prime}+\epsilon \\
& \Delta E_{1} \leq e_{1}-\epsilon \\
& \Delta E_{2} \leq e_{2}-\epsilon
\end{aligned}
$$

or equivalent conditions for last two conditions are

$$
\begin{aligned}
& \frac{1}{n} I\left(X_{k_{h}}^{n} ; M^{t}, X_{k_{r}}^{\prime n}, X_{k_{h}}^{\prime n}\right) \leq L_{1}-\epsilon \\
& \frac{1}{n} I\left(X_{k_{h}}^{\prime n} ; M^{t}, X_{k_{r}}^{n}, X_{k_{h}}^{n}\right) \leq L_{2}-\epsilon
\end{aligned}
$$

Let us define \mathcal{R}^{*} as set of all achievable $\left(R_{1 \rightarrow 2}, R_{2 \rightarrow 1}, D, D^{\prime}, e, e^{\prime}\right)$.
In addition of that \mathcal{R}_{D-e}^{*} is distortion - equivocation achievable region. and equivocation function $E_{1 \rightarrow 2}^{*}\left(D, D^{\prime}\right), E_{2 \rightarrow 1}^{*}\left(D, D^{\prime}\right)$ and Rate-distortion-equivocation function $R_{1 \rightarrow 2}^{*}\left(D, D^{\prime}, e, e^{\prime}\right), R_{2 \rightarrow 1}^{*}\left(D, D^{\prime}, e, e^{\prime}\right)$ as following:

$$
R_{1 \rightarrow 2}^{*}\left(D, D^{\prime}, e, e^{\prime}\right)=\min _{\left(R_{1 \rightarrow 2}, R_{2} \rightarrow 1, D, D^{\prime}, e, e^{\prime}\right) \in \mathcal{R}^{*}} R_{1 \rightarrow 2}
$$

$$
\begin{gathered}
R_{2 \rightarrow 1}^{*}\left(D, D^{\prime}, e, e^{\prime}\right)=\min _{\left(R_{2 \rightarrow 1}, R_{1 \rightarrow 2}, D, D^{\prime}, e, e^{\prime}\right) \in \mathcal{R}^{*}} R_{2 \rightarrow 1} \\
E_{1 \rightarrow 2}^{*}\left(D, D^{\prime}\right)=\max _{\left(D, D^{\prime}, e, e^{\prime}\right) \in \mathcal{R}_{D-e}^{*}} e \\
E_{2 \rightarrow 1}^{*}\left(D, D^{\prime}\right)=\max _{\left(D, D^{\prime}, e, e^{\prime}\right) \in \mathcal{R}_{D-e}^{*}} e^{\prime}
\end{gathered}
$$

where $\mathcal{R}_{D-e}^{*}=\left\{\left(D, D^{\prime}, e, e^{\prime}\right):\left(R_{1 \rightarrow 2}, R_{2 \rightarrow 1}, D, D^{\prime}, e, e^{\prime}\right)\right.$ is achievable for some $\left.R_{1 \rightarrow 2} \geq 0 R_{2 \rightarrow 1} \geq 0\right\}$.
Before considering general two-way communication systems we narrow down the problem to two special cases.
Consider one-way communication system Fig[2].

Figure 2: One-Way communication systems
Proposition 1: Consider one-way communication in Fig[2], we have

$$
\begin{align*}
& R^{*}(D, e)=\min _{P\left(\hat{X}_{k_{r}} \mid X_{k_{h}}, X_{k_{r}}\right): E d\left(X_{\left.k_{r}, \hat{X}_{k_{r}}\right) \leq D, H\left(X_{k_{h}} \mid \hat{X}_{k_{r}}\right) \geq e} I\left(X_{k_{r}}, X_{k_{h}} ; \hat{X}_{k_{r}}\right)\right.} \tag{5}\\
& E^{*}(D)=\max _{P\left(X_{k_{r}}, X_{k_{h}}, \hat{X}_{k_{r}}\right) \in \mathcal{P}(D)} H\left(X_{k_{h}} \mid \hat{X}_{k_{r}}\right)
\end{align*}
$$

where $\mathcal{P}(D):=\bigcup_{H\left(X_{k_{h}} \mid \hat{X}_{k_{r}}\right) \leq e \leq H\left(X_{k_{h}}\right)} \mathcal{P}(D, e)$ where $\mathcal{P}(D, e)$ is the family of probability distribution $P\left(\hat{X}_{k_{r}} \mid X_{k_{h}}, X_{k_{r}}\right)$ such that

$$
\begin{gathered}
E d\left(X_{k_{r}}, \hat{X}_{k_{r}}\right) \leq D \\
H\left(X_{k_{h}} \mid \hat{X}_{k_{r}}\right) \geq e
\end{gathered}
$$

Proof: It has been proven in [1].
Now, consider Wyner-Ziv problem showed in Fig[3].

Figure 3: Source coding problem with side information at decoder

Proposition 2: Consider source Coding Problem with side information at decoder Fig[3] we have,

$$
\begin{gathered}
R^{*}(D, e) \geq I\left(X_{k_{r}}, X_{k_{h}} ; U \mid Z\right) \\
E^{*}(D) \leq H\left(X_{k_{h}} \mid U, Z\right)
\end{gathered}
$$

For some distribution $P\left(u \mid x_{k_{r}}, x_{k_{h}}\right)$ such that there is a function $\hat{x}_{k_{r}}=f(u, z)$ for which $E\left(d\left(X_{k_{r}}, \hat{X}_{k_{r}}\right)\right) \leq D$ and $|\mathcal{U}| \leq\left|\mathcal{X}_{k}\right|+1$ where $\left|\mathcal{X}_{k}\right|$ is the cardinality of $\mathcal{X}_{k_{r}} \cup \mathcal{X}_{k_{h}}$

Proof: It has been proven in [2, Theorem 2]
Now, consider the general interaction source coding Fig[1]. We have the following Theorem:

Theorem: For distortion $\left(D_{1}, D_{2}\right)$ the set of achievable $\left(R_{1 \rightarrow 2}, R_{2 \rightarrow 2}, E_{1 \rightarrow 2}, E_{2 \rightarrow 1}\right)$ is given by:

$$
\begin{gather*}
R_{1 \rightarrow 2} \geq R_{1 \rightarrow 2}^{\prime}\left(D_{1}, D_{2}, e_{1}, e_{2}\right)=I\left(X_{1}, Y_{1} ; U^{t} \mid X_{2}, Y_{2}\right) \tag{6}\\
R_{2 \rightarrow 1} \geq R_{2 \rightarrow 1}^{\prime}\left(D_{1}, D_{2}, e_{1}, e_{2}\right)=I\left(X_{2}, Y_{2} ; U^{t} \mid X_{1}, X_{2}\right) \tag{7}\\
E_{1 \rightarrow 2} \leq E_{1 \rightarrow 2}^{\prime}\left(D_{1}, D_{2}\right)=H\left(Y_{1} \mid U^{t}, X_{2}, Y_{2}\right) \tag{8}\\
E_{2 \rightarrow 1} \leq E_{1 \rightarrow 2}^{\prime}\left(D_{1}, D_{2}\right)=H\left(Y_{2} \mid U^{t}, X_{1}, Y_{1}\right) \tag{9}
\end{gather*}
$$

for some conditional pmf $\prod_{k=1}^{t} P\left(u_{k} \mid x_{j_{k}}, u^{k-1}\right)$ and two functions $\hat{X}_{1}=G\left(U^{t}, X_{2}, Y_{2}\right)$, $\hat{X}_{2}=F\left(U^{t}, X_{1}, Y_{1}\right)$ such that $E\left(d_{x_{1}}\left(X_{1}, \hat{X}_{1}\right)\right) \leq D_{1}, E\left(d_{x_{2}}\left(X_{2}, \hat{X}_{2}\right)\right) \leq D_{2}$ and $\left|\mathcal{U}_{k}\right| \leq\left|\mathcal{X}_{j_{k}}\right| \cdot\left(\prod_{j=1}^{k-1}\left|\mathcal{U}_{j}\right|\right)+1$ where $j_{k}=1$ if k is odd and $\left|\mathcal{X}_{j_{k}}\right|=\left|\mathcal{X}_{1} \cup \mathcal{Y}_{1}\right|$ and $j_{k}=2$ if k is even and $\left|\mathcal{X}_{j_{k}}\right|=\left|\mathcal{X}_{2} \cup \mathcal{Y}_{2}\right|$

Proof: Converse: we now develop lower and upper bound on the rate and equivocation respectively. We show that given a $\left(n, t,\left\{e_{k}\right\}_{k=1}^{t}, g_{A}, g_{B}, D_{1}, D_{2}, e_{1}, e_{2}\right)$ code there exists a $P\left(X_{1}, X_{2}, Y_{1}, Y_{2}, U^{t}\right)$ such that the rate and equivocation of the system are bounded as below:

$$
\begin{gather*}
n\left(R_{1 \rightarrow 2}+\epsilon\right) \geq \sum_{j: o d d} H\left(M_{j}\right) \geq H\left(M_{1}, M_{3}, \ldots, M_{t-1} \mid X_{2}^{n}, Y_{2}^{n}\right) \\
\geq I\left(X_{1}^{n}, Y_{1}^{n} ; M_{1}, M_{3}, \ldots, M_{t-1} \mid X_{2}^{n}, Y_{2}^{n}\right) \\
=H\left(X_{1}^{n}, Y_{1}^{n}\right)-H\left(X_{1}^{n}, Y_{1}^{n} \mid M_{1}, M_{3}, \ldots, M_{t-1}, X_{2}^{n}, Y_{2}^{n}\right) \\
=H\left(X_{1}^{n}, Y_{1}^{n}\right)-H\left(X_{1}^{n}, Y_{1}^{n} \mid M_{1}, M_{2}, \ldots, M_{t}, X_{2}^{n}, Y_{2}^{n}\right) \tag{10}\\
=\sum_{i=1}^{n} H\left(X_{1, i}, Y_{1, i}\right)-H\left(X_{1, i}, Y_{1, i} \mid M_{1}, \ldots, M_{t}, X^{i-1}{ }_{1, i}, Y^{i-1}{ }_{1, i}, X_{2}^{n}, Y_{2}^{n}\right) \\
\geq \sum_{i=1}^{n} H\left(X_{1, i}, Y_{1, i}\right)-H\left(X_{1, i}, Y_{1, i} \mid M^{t}, X_{1, i}^{i-1}{ }_{1,}, Y_{1, i}^{i-1}{ }_{1, X_{2, i}}, Y_{2, i}, X_{2, i+1}^{n}, Y_{2, i+1}^{n}\right) \tag{11}
\end{gather*}
$$

Now consider $U_{1 i}=\left(X_{2, i+1}^{n}, Y_{2, i+1}^{n}, X_{1}^{i-1}, Y^{i-1}{ }_{1}, M_{1}\right), U_{k i}=M_{k} \forall k=2, . . t$

So,

$$
\begin{equation*}
R_{1 \rightarrow 2}+\epsilon \geq \frac{1}{n} \sum_{i=1}^{n} I\left(X_{1, i}, X_{2, i} ; U_{i}^{t} \mid Y_{1, i}, Y_{2, i}\right) \tag{12}
\end{equation*}
$$

We also have

$$
\begin{gathered}
E_{1 \rightarrow 2}-\epsilon \leq \frac{1}{n} H\left(Y_{1}^{n} \mid M^{t}, X_{2}^{n}, Y_{2}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} H\left(X_{1, i} \mid M^{t}, X_{1}^{n}, Y_{2}^{n}, Y_{2, i+1}^{n}\right) \\
\leq \frac{1}{n} \sum_{i=1}^{n} H\left(Y_{2, i} \mid U^{t}, X_{2, i}, Y_{2, i}\right)
\end{gathered}
$$

$I\left(X_{1}, Y_{1} ; U^{t} \mid X_{2}, Y_{2}\right)$ is non-increasing convex function of $\left(D_{1}, D_{2}\right)$ and nondecreasing convex function of $\left(e_{1}, e_{2}\right)[1]$.

Define:

$$
\begin{gathered}
E d_{x_{1}}\left(X_{1, i}, \hat{X}_{1, i}\right)=d_{i} \\
E d_{x_{2}}\left(X_{2, i}, \hat{X}_{2, i}^{\prime}\right)=d_{i}^{\prime} \\
H\left(Y_{1, i} \mid U^{t}, X_{2, i}, Y_{2, i}\right)=e_{i} \\
H\left(Y_{2, i} \mid U^{t}, X_{1, i}, Y_{1, i}\right)=e_{i}^{\prime}
\end{gathered}
$$

, then

$$
D_{1}+\epsilon \geq \frac{1}{n} \sum_{i=1}^{n} E d_{x}\left(X_{1, i}, \hat{X}_{1, i}\right)=\frac{1}{n} \sum_{i=1}^{n} d_{i}
$$

similarly, we have:

$$
\begin{gather*}
D_{2}+\epsilon \geq \frac{1}{n} \sum_{i=1}^{n} E d_{x^{\prime}}\left(X_{2, i}, \hat{X}_{2, i}^{\prime}\right)=\frac{1}{n} \sum_{i=1}^{n} d_{i}^{\prime} \\
E_{1 \rightarrow 2}-\epsilon \leq \frac{1}{n} \sum_{i=1}^{n} H\left(Y_{1, i} \mid U^{t}, X_{2, i}, Y_{2, i}\right)=\frac{1}{n} \sum_{i=1}^{n} e_{i} \\
R_{1 \rightarrow 2}+\epsilon \geq \frac{1}{n} \sum_{i=1}^{n} I\left(X_{1, i}, Y_{1, i} ; U_{i}^{t} \mid X_{2, i}, Y_{2, i}\right) \\
\geq \sum_{i=1}^{n} \frac{1}{n} R_{1 \rightarrow 2}^{\prime}\left(d_{i}, d_{i}^{\prime}, e_{i}, e_{i}^{\prime}\right) \tag{13}\\
\geq R_{1 \rightarrow 2}^{\prime}\left(\frac{1}{n} \sum_{i=1}^{n} d_{i}, \frac{1}{n} \sum_{i=1}^{n} d_{i}^{\prime}, \frac{1}{n} \sum_{i=1}^{n} e_{i}, \frac{1}{n} \sum_{i=1}^{n} e_{i}^{\prime}\right) \tag{14}\\
\geq R_{1 \rightarrow 2}^{\prime}\left(D_{1}+\epsilon, D_{2}+\epsilon, e_{1}-\epsilon, e_{2}-\epsilon\right) \tag{15}
\end{gather*}
$$

(10): $M_{2}, M_{4}, \ldots M_{t}$ are functions of $M_{1}, M_{3}, \ldots M_{t-1}$ and X_{2}^{n}, Y_{2}^{n}
(13): definition of the problem
(14): Jensen's inequality
(15) $R_{1 \rightarrow 2}$ is non-increasing function of D_{1}, D_{2} and non-decreasing function of e_{1}, e_{2}.

Achievability: For this proof we use binning coding scheme introduced in [4]. By using this method we know

$$
\begin{aligned}
& R_{1 \rightarrow 2} \geq I\left(X_{1}, Y_{1} ; U^{t} \mid X_{2}, Y_{2}\right) \\
& R_{2 \rightarrow 1} \geq I\left(X_{2}, Y_{2} ; U^{t} \mid X_{1}, Y_{1}\right)
\end{aligned}
$$

are achievable. For this code, let us evaluate the equivocation rate. we have to prove:

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} H\left(Y_{1}^{n} \mid M^{t}, X_{2}^{n}, Y_{2}^{n}\right) \geq H\left(Y_{1} \mid U^{t}, X_{2} Y_{2}\right)-\epsilon
$$

or equivalently

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} I\left(Y_{1}^{n} ; M^{t}, X_{2}^{n}, Y_{2}^{n}\right) \leq I\left(Y_{1} \mid U^{t}, X_{2}, Y_{2}\right)+\epsilon
$$

We consider $I\left(Y_{1}^{n} ; M^{t}, U_{1}^{n}, \ldots, U_{t}^{n}, X_{2}^{n}, Y_{2}^{n}\right)$

$$
\begin{align*}
& I\left(Y_{1}^{n} ; M^{t}, U_{1}^{n}, \ldots, U_{t}^{n}, X_{2}^{n}, Y_{2}^{n}\right)=I\left(Y_{1}^{n} ; M^{t}, X_{2}^{n}, Y_{2}^{n}\right)+I\left(Y_{1}^{n} ; U_{1}^{n}, \ldots, U_{t}^{n} \mid M^{t}, X_{2}^{n}, Y_{2}^{n}\right) \\
&=I\left(Y_{1}^{n} ; M^{t}, X_{1}^{n}, Y_{2}^{n}\right) \tag{16}\\
& I\left(Y_{1}^{n} ; U_{1}^{n}, \ldots, U_{t}^{n}, X_{2}^{n}, Y_{2}^{n}\right)+I\left(Y_{1}^{n} ; M^{t} \mid U_{1}^{n}, \ldots, U_{t}^{n}, X_{2}^{n}, Y_{2}^{n}\right)
\end{align*}
$$

we know that:

$$
\begin{equation*}
I\left(Y_{1}^{n} ; U^{t}, X_{2}^{n}, Y_{2}^{n}\right)=n I\left(Y_{1} \mid U^{t}, X_{2}, Y_{2}\right) \tag{17}
\end{equation*}
$$

then because $I\left(Y_{1}^{n} ; M^{t} \mid U_{1}^{n}, \ldots, U_{t}^{n}, X_{2}^{n}, Y_{2}^{n}\right) \geq 0$, we have:

$$
I\left(Y_{1}^{n} ; M^{t}, X_{1}^{n}, Y_{2}^{n}\right) \leq n I\left(Y_{1} \mid U^{t}, X_{2}, Y_{2}\right)
$$

(16): encoding scheme implies the decodability of $U_{1}^{n}, \ldots, U_{t}^{n}$ as follows: upon receiving the bin index. Decoder finds the unique u_{1}^{n} in the received bin such that $\left(u_{1}^{n}, y^{n}\right)$ are jointly typical, then find u_{2}^{n} such that $\left(u_{1}^{n}, u_{2}^{n}, y^{n}\right)$ are jointly typical. We keep doing this till we have a path with length t. So, we can decode unique $U_{1}^{n}, \ldots, U_{t}^{n}$ correctly with probability of error goes to zero. According to fano's inequality :

$$
\begin{gathered}
H\left(U_{1}^{n}, \ldots, U_{t}^{n} \mid M_{1}, M_{2}, \ldots, M_{t}, X^{n}\right) \leq n \delta(n) \\
H\left(U_{1}^{n}, \ldots, U_{t}^{n} \mid M_{1}, M_{2}, \ldots, M_{t}, Y^{n}\right) \leq n \delta(n) \\
H\left(U_{1}^{n}, \ldots, U_{t}^{n} \mid M_{1}, M_{2}, \ldots, M_{t}, X^{n}, Y^{n}\right) \leq n \delta(n)
\end{gathered}
$$

where $n \delta(n) \rightarrow 0$ when $n \rightarrow \infty$. So, (16) $\rightarrow 0$ when $n \rightarrow \infty$.
(17): because

$$
I\left(Y_{1}^{n} ; U^{t}, X_{2}^{n}, Y_{2}^{n}\right)=H\left(Y_{1}^{n}\right)-H\left(Y_{1}^{n} \mid U^{t}, X_{2}^{n}, Y_{2}^{n}\right)
$$

so we just need to prove:

$$
H\left(Y_{1}^{n} \mid U^{t}, X_{2}^{n}, Y_{2}^{n}\right)=n H\left(Y_{1} \mid U^{t}, X_{2}, Y_{2}\right)
$$

For this we have:

$$
\begin{gather*}
H\left(Y_{1}^{n} \mid U^{t}, X_{2}^{n}, Y_{2}^{n}\right)=\sum_{u, x_{2}, y_{2}} P\left(U^{t}=u, X_{2}^{n}=x_{2}, Y_{2}^{n}=y_{2}\right) H\left(Y_{1}^{n} \mid u, x_{2}, y_{2}\right) \\
\quad=\sum_{u, x_{2}, y_{2} \in \mathcal{T}_{U^{t}, X_{2}, Y_{2}}} P\left(u, x_{2}, y_{2}\right) H\left(Y_{1}^{n} \mid u, x_{2}, y_{2}\right) \\
\quad+\sum_{u, x_{2}, y_{2} \notin \mathcal{T}_{U^{t}, X_{2}, Y_{2}}} P\left(u, x_{2}, y_{2}\right) H\left(Y_{2}^{n} \mid u, x_{2}, y_{2}\right) \\
\leq \sum_{u, x_{2}, y_{2} \in \mathcal{T}_{U^{t}, X_{2}, Y_{2}}} P\left(u, x_{2}, y_{2}\right) H\left(Y_{1}^{n} \mid u, x_{2}, y_{2}\right)+n H\left(Y_{1}\right) \delta(n) \tag{18}
\end{gather*}
$$

$$
\begin{gather*}
=n H\left(Y_{1}\right) \delta(n) \\
+\sum_{u, x_{2}, y_{2} \in \mathcal{T}_{U^{t}, X_{2}, Y_{2}}} P\left(u, x_{2}, y_{2}\right)\left[-\sum_{y_{1} \in \mathcal{T}_{Y_{1} \mid u, x_{2}, y_{2}}} P\left(y_{1} \mid u, x_{2}, y_{2}\right) \log \left(P\left(y_{1} \mid u, x_{2}, y_{2}\right)\right)\right. \tag{20}\\
\left.+\sum_{u, x_{2}, y_{2} \notin \mathcal{T}_{Y_{1} \mid u, x_{2}, y_{2}}} P\left(y_{1} \mid u, x_{2}, y_{2}\right) \log \left(P\left(y_{1} \mid u, x_{2}, y_{2}\right)\right)\right] \tag{19}\\
\leq n H\left(Y_{1} \mid U^{t}, X_{2}, Y_{2}\right)+n \epsilon(n) \tag{21}
\end{gather*}
$$

where $n \epsilon(n) \rightarrow 0$ when $n \rightarrow \infty$.
(18): $P\left(u, x_{2}, y_{2} \notin \mathcal{T}\right) \leq \delta(n)$ where $n \delta(n) \rightarrow 0$ when $n \rightarrow \infty$.
the first term in the last inequality holds because of our coding scheme and second term can be less than $\delta^{\prime}(n)$.

3 Conclusions

The characterization of the achievable rate, distortion and equivocation region for the two-way source coding problem depicted in Fig. [1] does not involve the block length n . for the finite number of messages t we established the rate-distortionequivocation single letter characterization. The rate-distortion-equivocation region for infinite number of messages is still unknown.

4 References

[1] H. Yamamoto, A Source Coding Problem for Source with Additional outputs to keep secret from receivers and wiretappers, IEEE Trans. Inform Theory, Vol. 29, No.6, pp. 918-923, Nov. 1983
[2] L. Sankar, S.R. Rajagopalan and H.V. Poor, Utility-Privacy Tradeoff in Database: An Information Theoretic Approach, IEEE Trans.Inform Theory, 2012
[3] N. Ma, Interaction Source Coding for Function Computation in Networks, Ph.D. Dissertation, Boston University, 2011
[4] A.H. Kaspi, Two-way Source Coding with a fidelity Criterion, IEEE Trans. Inform. Theory, 735-740, 1985
[5] A. Elgamal, Y.H. Kim, Network Information Theory,Cambridge University Press,2011

