Information-Theoretic Private Interactive Mechanism

Bahman Moraffah

Arizona State University

August 19, 2015

Overview

(1) Introduction

- Motivation
- Problem Description and Related Work
(2) Private Interactive Mechanism
- System Model
- When Does Interaction Help?
- Interaction Reduces Leakage: Illustration
- Gaussian Sources: Interactive Mechanism
(3) Private Interactive Mechanism under Log-Loss Distortion
- Leakage-Distortion Region under Log-Loss
- Leakage-Distortion under Log-Loss: Privacy Funnel
- Information Bottleneck and Agglomerative Algorithm
- Interaction under Log-loss: Agglomerative Approach - Merge and Search Algorithm
- Agglomerative Iterative Algorithm
- Gaussian Sources Under Log-Loss Distortion
- Illustration of Results
(4) Conclusions and Future Work
- Conclusions
- Future Work

Motivation

- Many distributed systems need to exchange data amongst different agents (e.g., electric power systems).
- Data sharing critical for high fidelity estimation.
- However, sharing often inhibited due to privacy/ trust/ security constraints.
- Competitive Privacy: ${ }^{1}$ Can data be shared so as to reveal specific public features of data while keeping the leakage of private features minimal?

- Determine privacy-guaranteed interactive data sharing information-theoretic mechanisms.

[^0]
Problem Description

- Consider a two agent setup where each agent has public and private data.
- Goal is to minimize the leakage of private data while ensuring the fidelity of public data over multiple rounds.
- Develop leakage-distortion tradeoff for interactive setting for various distributions and distortion measures.

Related Work: Utility-Privacy Tradeoff

One-shot data publishing setting:

- Sankar et. al. ${ }^{2}$ introduced an information-theoretic formulation of the utility-privacy tradeoff problem.
- Utility modeled as distortion and privacy captured via a mutual information based leakage.
- Database modeled as an n -length sequence from an i.i.d source.
- Utility-privacy tradeoff captured by the set of achievable distortion-leakage tuples.

Interactive setting:

- Sankar et. al. ${ }^{3}$ consider a two-agent setup with Gaussian distributed correlated observations at each agent.
- Optimal utility-privacy tradeoff region shown to be achieved by a Gaussian privacy mechanism.
- Focus of this thesis is on the interactive setting with general distributions and distortions.

[^1]
Relationship to Interactive Source Coding:

- Utility-privacy tradeoff problem does not involve encoders and decoders.
- Mutual information used as a measure of information leakage.
- Thus, leakage-distortion optimizations have a flavor of rate-distortion optimizations.
- Much work on interactive source coding problem by Kaspi ${ }^{4}$ and Ma et. al.. ${ }^{5}$
- Closely related is work by Ma et. al..
- Our approach on conditions when interaction helps is similar to Ma. ${ }^{6}$

[^2]
Related Work

Information Bottleneck

- Goal is to minimize the compression rate of public data subject to constraint on the log-loss distortion of private data. ${ }^{7}$
- In our problem we minimize information leakage of the private feature while lower bounding the (mutual) information of the public feature.

One-way non-interactive setting

- Under log-loss distortion and mutual information leakage Makhdoumi et. al. ${ }^{8}$ developed tradeoff region.
- Use an algorithm based on the agglomerative information bottleneck algorithm.

We generalize an algorithmic solution and highlight the advantages of multiple rounds of data sharing to reduce leakage.

[^3]
System Model

- Consider a two-way interactive model, where agents A and B generate n-length i.i.d. sequences $\left(X_{1}^{n}, Y_{1}^{n}\right)$ and $\left(X_{2}^{n}, Y_{2}^{n}\right)$, respectively.
- The public data at both agents are denoted by $X_{(\cdot)}^{n}$ and the correlated private data by $Y_{(\cdot)}^{n}$.

- We assume that the private data is hidden and can only be leaked through the public data.
- Without loss of generality, we assume that agent A initiates the interaction and K is even.

K-interactive Privacy Mechanism

Definition

A K-interactive privacy mechanism $\left(n, K,\left\{P_{1 i}\right\}_{i=1}^{K / 2},\left\{P_{2 i}\right\}_{i=1}^{K / 2}, D_{1}, D_{2}, L_{1}, L_{2}\right)$ is a collection of K probabilistic mappings such that agent A shares data in the odd rounds beginning with round 1 and agent B shares in the even rounds such that:

$$
\left\{\begin{array}{lll}
P_{11}: \mathcal{X}_{1}^{n} \rightarrow \mathcal{U}_{1}^{n} & \\
P_{1, \frac{i+1}{2}}:\left(\mathcal{X}_{1}^{n}, \mathcal{U}_{1}^{n}, \mathcal{U}_{2}^{n}, \ldots, \mathcal{U}_{i-1}^{n}\right) \rightarrow \mathcal{U}_{i}^{n} & \text { for } & i=3,5, \ldots, K-1 \\
P_{2, \frac{i}{2}}:\left(\mathcal{X}_{2}^{n}, \mathcal{U}_{1}^{n}, \ldots, \mathcal{U}_{i-1}^{n}\right) \rightarrow \mathcal{U}_{i}^{n} & \text { for } & i=2,4, \ldots, K
\end{array}\right.
$$

At the end of K-rounds A and B reconstruct sequences \hat{X}_{2}^{n} and \hat{X}_{1}^{n}, respectively, where $\hat{X}_{1}^{n}=g_{2}\left(X_{2}^{n}, U_{1}^{n}, \ldots, U_{K}^{n}\right)$ and $\hat{X}_{2}^{n}=g_{1}\left(X_{1}^{n}, U_{1}^{n}, \ldots, U_{K}^{n}\right)$, and g_{1} and g_{2} are appropriately chosen functions.

Cont'd.

The set of $K / 2$ mechanism pairs $\left\{P_{1 j}, P_{2 j}\right\}_{j=1}^{\frac{K}{2}}$ is chosen to satisfy

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{\infty} E\left(d_{1}\left(X_{1 i}, \hat{X}_{1 i}\right)\right) \leq D_{1}+\epsilon \\
& \frac{1}{n} \sum_{i=1}^{\infty} E\left(d_{2}\left(X_{2 i}, \hat{X}_{2 i}\right)\right) \leq D_{2}+\epsilon \\
& \frac{1}{n} I\left(Y_{1}^{n} ; U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}\right) \leq L_{1}+\epsilon \\
& \frac{1}{n} I\left(Y_{2}^{n} ; U_{1}^{n}, \ldots, U_{K}^{n}, X_{1}^{n}\right) \leq L_{2}+\epsilon
\end{aligned}
$$

where $d_{1}(\cdot, \cdot)$ and $d_{2}(\cdot, \cdot)$ are the given distortion measures.

Leakage-Distortion Region Theorem

Theorem

For target distortion pair $\left(D_{1}, D_{2}\right)$, and for a K-round mechanism the leakage-distortion region is given as

$$
\begin{aligned}
\left\{\left(L_{1}, L_{2}, D_{1}, D_{2}\right):\right. & L_{1} \geq I\left(Y_{1} ; U_{1}, \ldots, U_{K}, X_{2}\right), \\
& L_{2} \geq I\left(Y_{2} ; U_{1}, \ldots, U_{K}, X_{1}\right), \\
& E\left(d_{1}\left(X_{1}, \hat{X}_{1}\right)\right) \leq D_{1}, \\
& \left.E\left(d_{2}\left(X_{2}, \hat{X}_{2}\right)\right) \leq D_{2}\right\}
\end{aligned}
$$

such that for all k, the following Markov chains hold:

$$
\begin{array}{r}
Y_{1} \leftrightarrow\left(U_{1}, \ldots, U_{2 k-1}, X_{2}\right) \leftrightarrow U_{2 k} \\
Y_{2} \leftrightarrow\left(U_{1}, \ldots, U_{2 k-2}, X_{1}\right) \leftrightarrow U_{2 k-1}
\end{array}
$$

with $\left|\mathcal{U}_{l}\right| \leq\left|\mathcal{X}_{i}\right| \cdot\left(\prod_{j=1}^{I-1}\left|\mathcal{U}_{j}\right|\right)+1$ where $i_{I}=1$ if I is odd and $i_{I}=2$ if I is even.

Sum Leakage-Distortion Function

- Assume interaction from agent A such that the last round of interaction is from agent B to agent A.

Definition

Define a compact subset of a finite Euclidean space as

$$
\begin{aligned}
\mathcal{P}_{K}^{A}:= & \left\{P_{U^{K} \mid X_{1}, Y_{1}, X_{2}, Y_{2}}: P_{U^{K} \mid X_{1}, Y_{1}, X_{2}, Y_{2}}=P_{U_{1} \mid X_{1}} P_{U_{2} \mid U_{1}, X_{2}} \ldots, P_{U_{K} \mid U^{K-1}, X_{2}},\right. \\
& \left.E\left(d_{1}\left(X_{1}, \hat{X}_{1}\right)\right) \leq D_{1}, E\left(d_{1}\left(X_{2}, \hat{X}_{2}\right)\right) \leq D_{2}\right\}
\end{aligned}
$$

Definition

The sum leakage-distortion function from agent A over K rounds is

$$
L_{\text {sum }, K}^{A}\left(D_{1}, D_{2}\right)=\min _{P_{U^{K} \mid X_{1}, Y_{1}, X_{2}, Y_{2} \in \mathcal{P}_{K}^{A}}}\left\{I\left(Y_{1} ; U_{1}, \ldots, U_{K}, X_{2}\right)+I\left(Y_{2} ; U_{1}, \ldots, U_{K}, X_{1}\right)\right\} .
$$

Property of $L_{\text {sum }, k}$

Lemma

For all k :
(1) $L_{\text {sum },(k-1)}^{A} \geq L_{\text {sum }, k}^{A}$. Similarly, $L_{\text {sum },(k-1)}^{B} \geq L_{\text {sum }, k}^{B}$.
(2) $L_{\text {sum },(k-1)}^{B} \geq L_{\text {sum }, k}^{A}$. Similarly, $L_{\text {sum },(k-1)}^{A} \geq L_{\text {sum }, k}^{B}$.

Proof.

For all k,

- (1) follows from the fact that any $(k-1)$-round interactive mechanism starting at one of the agent (e.g., A) can be considered as special case of k-round interactive mechanism starting at the same agent with $P_{U_{k} \mid U^{k-1}, X_{1}}=0$.
- The bounds in (2) follows from the fact that any $(k-1)$-round interactive mechanism initiated at B (resp. A) can be considered as a special case of a k-round interactive mechanism initiated at $A(r e s p . B)$ with $P_{U_{1} \mid X_{1}}=0$ (resp. $P_{U_{1} \mid X_{2}}=0$).

Property of $L_{\text {sum }, \infty}$

Definition

$L_{s u m, \infty}:=\lim _{k \rightarrow \infty} L_{s u m, k}^{A}=\lim _{k \rightarrow \infty} L_{s u m, k}^{B}$.

- From previous lemma, $L_{\text {sum }, k}^{A}$ and $L_{\text {sum }, k}^{B}$ are both non-increasing in k and bounded from below, and thus their limits exist.
- From previous lemma, $L_{\text {sum }, k-1}^{A} \geq L_{\text {sum }, k}^{B} \geq L_{\text {sum }, k+1}^{A}$ Thus, taking limits, since both $L_{\text {sum }, k}^{A}$ and $L_{\text {sum }, k}^{B}$ converge, we have that

$$
L_{\text {sum }, \infty}:=\lim _{k \rightarrow \infty} L_{\text {sum }, k}^{A}=\lim _{k \rightarrow \infty} L_{\text {sum }, k}^{B} .
$$

Therefore, $L_{\text {sum }, \infty}$ is well-defined.

When Does Interaction Help?

- From both a theoretical and an application viewpoint, it is of much interest to understand whether interaction reduces privacy leakage or if a single round of data sharing suffices for a fixed privacy budget (leakage constraint).
- Ma et. al. considered interactive source coding problem and discussed conditions under which interaction helps. ${ }^{9}$
- Ma's approach can be applied to our interactive leakage-distortion problem with both public and private variables.

[^4]
Leakage Reduction Function

- To characterize $L_{\text {sum }, \infty}$, introduce a leakage-reduction function.

Definition

The leakage reduction function for a K-round interactive mechanism initiated at agent A is defined as

$$
\begin{aligned}
& \eta_{K}^{A}\left(P_{\left.X_{1}, Y_{1}, X_{2}, Y_{2}, D_{1}, D_{2}\right):=H\left(Y_{1}\right)+H\left(Y_{2}\right)-L_{\text {sum }, K}^{A}\left(D_{1}, D_{2}\right)}^{=\max _{P_{U^{K} \mid X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{K}^{A}}\left[H\left(Y_{1} \mid U^{K}, X_{2}\right)+H\left(Y_{2} \mid U^{K}, X_{1}\right)\right]}\right.
\end{aligned}
$$

- $\eta_{K}^{A}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right)$ depends on the distributions $P_{X_{1}, Y_{1} \mid X_{2}}$ and $P_{X_{2}, Y_{2} \mid X_{1}}$.
- Evaluating η_{K}^{A} is equivalent to evaluating $L_{\text {sum, } K}^{A}$.
- η_{K}^{A} and η_{K}^{B} are non-decreasing functions of K.
- For $\eta_{\infty}=\lim _{K \rightarrow \infty} \eta_{K}^{A}$, we have $L_{\text {sum }, \infty}^{A}=H\left(Y_{1}\right)+H\left(Y_{2}\right)-\eta_{\infty}$.
- $L_{\text {sum }, 0}^{A}=L_{\text {sum }, 0}^{B}=L_{\text {sum }, 0}=I\left(Y_{1} ; X_{2}\right)+I\left(Y_{2} ; X_{1}\right)$.
- $\eta_{0}=H\left(Y_{1} \mid X_{2}\right)+H\left(Y_{2} \mid X_{1}\right)$.

Marginal-Perturbation-Closed Family of Joint Distributions

- $\eta_{K}^{A}=\max _{P_{U^{K} \mid X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{K}^{A}}\left[H\left(Y_{1} \mid U^{K}, X_{2}\right)+H\left(Y_{2} \mid U^{K}, X_{1}\right)\right]$ depends on $P_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ only through $P_{X_{2}, Y_{2} \mid X_{1}}$ and $P_{X_{1}, Y_{1} \mid X_{2}}$.

Definition

The marginal perturbation set $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}$ for a given joint distribution $P_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ is defined as

$$
\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}\left(P_{x_{1}, Y_{1}, x_{2}, Y_{2}}\right)=\left\{P_{X_{1}, Y_{1}, X_{2}, Y_{2}}^{\prime}: P_{X_{1}, Y_{1}, x_{2}, Y_{2}}^{\prime} \ll P_{x_{1}, Y_{1}, x_{2}, Y_{2}}, P_{X_{2}, Y_{2} \mid X_{1}}^{\prime}=P_{X_{2}, Y_{2} \mid X_{1}}\right\}
$$ where " \ll " is majorizing operator.

- $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right)$ can similarly be defined.
- $\eta_{K}^{A}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right)$ depends on the distributions $P_{X_{2}, Y_{2} \mid X_{1}}$ and $P_{X_{1}, Y_{1} \mid X_{2}}$.
- Sufficient to focus on the family of distributions which is closed with respect to $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}$ and $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}$.

Definition

A family of joint distributions $\mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ is marginal-perturbation-closed if for all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}, \mathcal{P}_{X_{2}, Y_{2} \mid X_{1}} \cup \mathcal{P}_{X_{1}, Y_{1} \mid X_{2}} \subseteq \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$.

Lemma: Relationship between $(k-1)$-Round and k-Round Interactive

 Mechanism
Lemma

(1) For all $k \in \mathbb{Z}^{+}$and $P_{X_{1}, Y_{1}, x_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ we have

$$
\begin{aligned}
& \eta_{k}^{A}\left(P_{\left.X_{1}, Y_{1}, X_{2}, Y_{2}, D_{1}, D_{2}\right)=} \max _{P\left(U_{1} \mid X_{1}\right)}\left\{\begin{array}{c}
\substack{\forall u_{1} \in \mathcal{U}_{1},\left(D_{1}^{\prime}, D_{2}\right)_{u_{1}} \in \mathcal{D}^{2} \\
\left(D_{1}^{\prime}, D_{2}\right)_{u_{1}}: E\left(\left(D_{1}^{\prime}, D_{2}\right) u_{u_{1}}\right) \leq\left(D_{1}, D_{2}\right)}
\end{array}\left\{\sum_{u_{1} \in \mathcal{U}_{1}} g\left(u_{1}\right)\right\}\right\} .\right.
\end{aligned}
$$

where $g\left(u_{1}\right)=P\left(u_{1}\right) \eta_{k-1}^{B}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2} \mid u_{1}},\left(D_{1}^{\prime}, D_{2}\right)_{u_{1}}\right)$.
(2) For all $k \in \mathbb{Z}^{+}$and all $\left(q_{x_{1}, Y_{1}, x_{2}, Y_{2}}, D_{1}, D_{2}\right) \in \mathcal{P}_{X_{1}, Y_{1}, x_{2}, Y_{2}} \times \mathcal{D}^{2}, \eta_{k}^{A}$ is concave on $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}} \times \mathcal{D}^{2}$.
(3) For all $k \in \mathbb{Z}^{+}$and all $\left(q_{\left.X_{1}, Y_{1}, x_{2}, Y_{2}, D_{1}, D_{2}\right) \in \mathcal{P}_{X_{1}, Y_{1}, x_{2}, Y_{2}} \times \mathcal{D}^{2} \text {, if }}\right.$ $\eta: \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}} \times \mathcal{D}^{2} \rightarrow \mathbb{R}$ is concave on $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}} \times \mathcal{D}^{2}$ and if for all
$\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right) \in \mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}\left(q_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right) \times \mathcal{D}^{2}$,

$\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right) \in \mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}\left(q_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right) \times \mathcal{D}^{2}$,
$\eta_{k}^{A}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right) \leq \eta\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right)$.

Sketch of Proof

Sketch of Proof.

- part 1^{10}
- To construct a k-round interactive mechanism, we first pick U_{1}.
- For each realization of $U_{1}=u_{1}$, construct the remaining by considering $(k-1)$-round initiated at agent B but with different data distribution $P_{X_{1}, Y_{1}, X_{2}, Y_{2} \mid U_{1}=u_{1}} \in \mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right)$.
- Distortion vector $\left(D_{1}^{\prime}, D_{2}\right)_{u_{1}}$ for each realization $U_{1}=u_{1}$ in $(k-1)$-round interactive subproblem could be different from the original distortion vector $\left(D_{1}, D_{2}\right)$.
- $\sum_{u_{1}}\left(D_{1}^{\prime}, D_{2}\right)_{u_{1}} P_{U_{1}}\left(u_{1}\right)=\left(D_{1}, D_{2}\right)$.
- part 2
- By using the relationship between $(k-1)$-round and k-round interactive mechanism and definition of concave function, η_{k}^{A} is concave on $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}} \times \mathcal{D}^{2}$.
- part 3
- Using the relationship between $(k-1)$-round and k-round interactive mechanism and $\eta_{k-1}^{B} \leq \eta$ imply $\eta_{k}^{A} \leq \eta$.
- By reversing the roles of agent A and B in Lemma, we can prove the same lemma for agent B .

[^5]
η_{0}-Majorizing Family of Functionals

- Interaction does not help if $\eta_{k}^{A}=\eta_{k+1}^{B}$.
- η_{k+1}^{B} is concave on $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}$ (previous lemma).
- Interaction does not help if η_{k}^{A} is concave on $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}$.
- To characterize η_{∞}, introduce a set of functionals as follows:

Definition

η_{0}-majorizing family of functionals $\mathcal{F}_{D}\left(\mathcal{P}_{X_{1}, Y_{1}, \chi_{2}, \gamma_{2}}\right)$ is the set of all functionals $\eta: \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}} \times \mathcal{D}^{2} \rightarrow \mathbb{R}$ satisfying
(1) For all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ and $\left(D_{1}, D_{2}\right) \in \mathcal{D}^{2}$, $\eta\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right) \geq \eta_{0}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right)$.
(2) For all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}, \eta$ is concave on $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}$.
(3) For all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}, \eta$ is concave on $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}$.

Properties of η_{∞}

Theorem

$\eta_{\infty}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right) \in \mathcal{F}_{\mathcal{D}}\left(\mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right)$ and η_{∞} is the least element of the set $\mathcal{F}_{\mathcal{D}}\left(\mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right)$.

Proof.

- η_{∞} is in η_{0}-majorizing family of functionals $\mathcal{F}_{D}\left(\mathcal{P}_{X_{1}, Y_{1}, X_{2}, \gamma_{2}}\right)$ since:
- Condition 1 in definition of η_{0}-majorizing family of functionals is satisfied since $L_{\text {sum }, \infty} \leq L_{\text {sum }, 0}$.
- Condition 2 in definition of η_{0}-majorizing family of functionals is satisfied since $\eta_{\infty}=\lim _{k \rightarrow \infty} \eta_{k}^{A}$ and η_{k}^{A} is concave on $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}$.
- Condition 3 in definition of η_{0}-majorizing family of functionals is satisfied since $\eta_{\infty}=\lim _{k \rightarrow \infty} \eta_{k}^{B}$ and η_{k}^{B} is concave on $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}$.
- Proof that η_{∞} is the smallest element of $\mathcal{F}_{\mathcal{D}}\left(\mathcal{P}_{X_{1}, Y_{1}, x_{2}, \gamma_{2}}\right)$:
- By using induction on k in addition to part 3 of Lemma, if $\eta_{k-1}^{B} \leq \eta$, then $\eta_{k}^{A} \leq \eta$, η_{∞} is the least element of $\mathcal{F}_{\mathcal{D}}\left(\mathcal{P}_{X_{1}, Y_{1}, X_{2}, \gamma_{2}}\right)$.

Conditions under which Interaction Does Not Help

Theorem

The following equivalent conditions establish when interaction does not help.
(1) For all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ and $D=\left(D_{1}, D_{2}\right) \in \mathcal{D}^{2}$, $\eta_{k}^{A}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D\right)=\eta_{\infty}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D\right)$.
(2) For all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ and $D=\left(D_{1}, D_{2}\right) \in \mathcal{D}^{2}$,
$\eta_{k}^{A}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D\right)=\eta_{k+1}^{B}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D\right)$.
(3) For all $P_{X_{1}, Y_{1}, X_{2}, Y_{2}} \in \mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}$ and $D=\left(D_{1}, D_{2}\right) \in \mathcal{D}^{2}, \eta_{k}^{A}$ is concave on $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right) \times \mathcal{D}^{2}$.

Proof.

- Condition 1 implies condition 2 since $\eta_{k}^{A} \leq \eta_{k+1}^{B} \leq \eta_{\infty}$. This inequality holds due to $L_{\text {sum }, k}^{A} \geq L_{\text {sum }, k+1}^{B}$.
- Condition 2 implies condition 3 since $\eta_{k+1}^{B}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}, D_{1}, D_{2}\right)$ is concave on $\mathcal{P}_{X_{1}, Y_{1} \mid X_{2}}\left(P_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right) \times \mathcal{D}^{2}$.
- Condition 3 implies condition 1 since concavity of η_{k}^{A} on $\mathcal{P}_{X_{2}, Y_{2} \mid X_{1}}$ in addition to the fact that $\eta_{k}^{A} \geq \eta_{0}$ lead $\eta_{k}^{A} \in \mathcal{F}_{\mathcal{D}}\left(\mathcal{P}_{X_{1}, Y_{1}, X_{2}, Y_{2}}\right)$. According to theorem, η_{∞} is the least element of $\mathcal{F}_{\mathcal{D}}\left(\mathcal{P}_{X_{1}, Y_{1}, x_{2}, \gamma_{2}}\right)$, thus $\eta_{k}^{A} \geq \eta_{\infty}$. Therefore, $\eta_{k}^{A}=\eta_{\infty}$.

Interaction Reduces Leakage: Illustration

- Let $\left(X_{1}, X_{2}\right)$ be a $\operatorname{DSBS}(\mathrm{p})$ with $P_{X_{1}, X_{2}}(0,0)=P_{X_{1}, X_{2}}(1,1)=\frac{1-p}{2}$ and $P_{X_{1}, X_{2}}(1,0)=P_{X_{1}, X_{2}}(0,1)=\frac{p}{2}$.
- $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are correlated as follows:

$$
\begin{array}{ll}
Y_{1}=X_{1}+Z_{1} & Z_{1} \sim \operatorname{Ber}(p) \\
Y_{2}=X_{2}+Z_{2} & Z_{2} \sim \operatorname{Ber}(p)
\end{array}
$$

and Z_{1} and Z_{2} are independent of X_{1} and X_{2}.

- Let $d_{A}=0$ and consider an erasure distortion measure $d_{B}(\cdot, \cdot)$ as:

$$
d_{B}\left(x_{1}, \hat{x}_{1}\right)=\left\{\begin{array}{cc}
0, & \text { if } \hat{x}_{1}=x_{1} \\
1, & \text { if } \hat{x}_{1}=e \\
\infty, & \text { if } \hat{x}_{1}=1-x_{1} .
\end{array}\right.
$$

Theorem

Theorem

With one round from agent A to agent B, the optimal solution is

$$
L_{\text {sum }, 1}^{A}\left(0, D_{2}\right)=2-\left[\left(1-D_{2}\right) H(p)+\left(1+D_{2}\right) H(2 p(1-p))\right] .
$$

Proof.

- $L_{s u m, 1}^{A}\left(0, D_{2}\right)=\min _{P_{U_{1} \mid X_{1}}}\left[I\left(X_{1} ; Y_{2}\right)+I\left(Y_{1} ; U_{1}, X_{2}\right)\right]$
- $L_{\text {sum }, 1}^{A}\left(0, D_{2}\right)=2-H(2 p(1-p))-\max _{P\left(U_{1} \mid X_{1}\right)} H\left(Y_{1} \mid U_{1}, X_{2}\right)$ where $\mathcal{U}=\{0, e, 1\}$ and

$$
P\left(U_{1} \mid X_{1}\right)= \begin{cases}\alpha_{0}, & \text { if } x=0 \text { and } u=e \\ 1-\alpha_{0}, & \text { if } x=0 \text { and } u=0 \\ \alpha_{1}, & \text { if } x=1 \text { and } u=e \\ 1-\alpha_{1}, & \text { if } x=1 \text { and } u=1 \\ 0, & \text { otherwise }\end{cases}
$$

Proof.

- $E\left(d_{B}\left(X_{1}, U_{1}\right)\right)=P_{X_{1}}(0) \alpha_{0}+P_{X_{1}}(1) \alpha_{1} \leq D_{2}$.
- $P\left(X_{1}=0, U_{1}=1\right)=P\left(X_{1}=1, U_{1}=0\right)=0$ since otherwise $E\left(d_{B}\left(X_{1}, U_{1}\right)\right)=\infty$.
- Simplify $L_{\text {sum }, 1}^{A}\left(0, D_{2}\right)$

$$
\begin{aligned}
H\left(Y_{1} \mid U_{1}, X_{2}\right) & =\frac{1}{2}\left(1-\alpha_{0}\right) H(p)+\frac{1}{2}\left(1-\alpha_{1}\right) H(p) \\
& +\left[\frac{\alpha_{0}}{2}(1-p)+\frac{\alpha_{1}}{2} p\right] H\left(\frac{(1-p)^{2} \alpha_{0}+p^{2} \alpha_{1}}{(1-p) \alpha_{0}+p \alpha_{1}}\right) \\
& +\left[\frac{\alpha_{0}}{2} p+\frac{\alpha_{1}}{2}(1-p)\right] H\left(\frac{p(1-p) \alpha_{0}+p(1-p) \alpha_{1}}{p \alpha_{0}+(1-p) \alpha_{1}}\right)
\end{aligned}
$$

- $H\left(Y_{1} \mid U_{1}, X_{2}\right)$ is maximized if $\alpha_{0}=\alpha_{1}=\alpha$, then the result is attained.

Sum Leakage for $K=2$

- Consider the sum leakage-distortion for for two-round of interaction starting from agent B in round 1 and returning from A to B in round $2, K=2$.
- Set the conditional distribution $P_{U_{1} \mid X_{2}}$ as a $B S C(\alpha)$ and $P_{U_{2} \mid X_{1}, U_{1}}$ as in the following table and let $\hat{X}_{1}=U_{2}$.

$P_{U_{2} \mid x_{1}, U_{1}}$	$u_{2}=0$	$u_{2}=e$	$u_{2}=1$
$x_{1}=0, u_{1}=0$	$1-\beta$	β	0
$x_{1}=1, u_{1}=0$	0	1	0
$x_{1}=0, u_{1}=1$	0	1	0
$x_{1}=1, u_{1}=1$	0	β	$1-\beta$

- For $p=0.03, \alpha=0.35$, and $\beta=0.55$,

$$
L_{\text {sum }, 2}^{B}\left(0, D_{2}\right)=I\left(Y_{2} ; U_{1}, X_{1}\right)+I\left(Y_{1} ; U_{2} \mid U_{1}, X_{2}\right)=1.1876
$$

- Corresponding distortion is $D_{2}=E\left(d\left(X_{1}, \hat{X}_{1}\right)\right)=0.8116$.
- By comparison, the one-round setting for this distortion is

$$
L_{\text {sum }, 1}^{A}(0,0.8116)=1.3832
$$

Gaussian Sources: Interactive Mechanism

- Consider $\left(X_{1}, Y_{1}\right) \sim N\left(0, \Sigma_{X_{1}, Y_{1}}\right),\left(X_{2}, Y_{2}\right) \sim N\left(0, \Sigma_{X_{2}, Y_{2}}\right)$, and $\left(X_{1}, X_{2}\right) \sim N\left(0, \Sigma_{X_{1}, X_{2}}\right)$.
- For jointly Gaussian sources subject to mean square error distortion constraints, one round of interaction suffices to achieve the Leakage-distortion bound.

Theorem

For the private interactive mechanism, the leakage-distortion region under mean square error distortion constraints consist of all tuples $\left(L_{1}, L_{2}, D_{1}, D_{2}\right)$ satisfying

$$
\begin{aligned}
& L_{1} \geq \frac{1}{2} \log \left(\frac{\sigma_{Y_{1}}^{2}}{\alpha^{2} D_{1}+\sigma_{Y_{1} \mid X_{1}, X_{2}}^{2}}\right) \\
& L_{2} \geq \frac{1}{2} \log \left(\frac{\sigma_{Y_{2}}^{2}}{\beta^{2} D_{2}+\sigma_{Y_{2} \mid X_{1}, X_{2}}^{2}}\right)
\end{aligned}
$$

where $\alpha=\frac{\operatorname{cov}\left(X_{1}, Y_{1}\right)}{\sigma_{Y_{1}}^{2}}$ and $\beta=\frac{\operatorname{cov}\left(X_{2}, Y_{2}\right)}{\sigma_{Y_{2}}^{2}}$.

Proof: Converse.

Proof: Converse.

If $\left(X_{1}, Y_{1}\right)$ is jointly Gaussian, we can write $Y_{1}=\alpha X_{1}+Z_{1}$, where Z_{1} is a zero mean Gaussian random variable independent of X_{1}.

$$
\begin{aligned}
L_{1}+ & \epsilon \geq \frac{1}{n} I\left(Y_{1}^{n} ; U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}\right) \\
& =\frac{1}{n}\left[n h\left(Y_{1}\right)-\sum_{i=1}^{n} h\left(Y_{1 i} \mid U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}, Y_{1}^{i-1}\right)\right] \\
& \geq h\left(Y_{1}\right)-\frac{1}{n} \sum_{i=1}^{n} h\left(Y_{1 i} \mid U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}\right) \\
& \geq h\left(Y_{1}\right)-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \log \left(2 \pi e\left(\operatorname{Var}\left(Y_{1 i} \mid U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}\right)\right)\right) \\
& \geq h\left(Y_{1}\right)-\frac{1}{2} \log \left(2 \pi e \frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Var}\left(Y_{1 i} \mid U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}\right)\right)\right) \\
& \geq h\left(Y_{1}\right)-\frac{1}{2} \log \left(2 \pi e \frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{Var}\left(\alpha X_{1 i}+Z_{1 i} \mid U_{1}^{n}, \ldots, U_{K}^{n}, X_{2}^{n}\right)\right)\right) \\
& \geq \frac{1}{2} \log \left(\frac{\sigma_{Y_{1}}^{2}}{\alpha^{2} D_{1}+\sigma_{Y_{1} \mid X_{1}, X_{2}}^{2}}\right)
\end{aligned}
$$

Similarly, we can prove $L_{2} \geq \frac{1}{2} \log \left(\frac{\sigma_{Y_{2}}^{2}}{\beta^{2} D_{2}+\sigma_{Y_{2} \mid X_{1}, X_{2}}^{2}}\right)$.

Proof: Achievability.

Proof: Achievability.

- The sequence U_{1}^{n} is chosen such that the 'test channel' from U_{1} to X_{1} yields $U_{1}=X_{1}+V_{1}$, where V_{1} is Gaussian and independent of the rest of random variables, with variance Q chosen to satisfy distortion condition D_{1} and $\hat{X}_{1}=E\left[X_{1} \mid U_{1}, X_{2}\right]$.
- For such a system, the achievable distortion is $D_{1}=E\left(\operatorname{Var}\left(X_{1} \mid U_{1}, X_{2}\right)\right)$ (no interaction is required).

Log-Loss Distortion

Definition

For a random variable $X \in \mathcal{X}$ and its reproduction alphabet $\hat{\mathcal{X}}$ as the set of probability measures on \mathcal{X}, the log-loss distortion is defined as

$$
d(x, \hat{x})=\log \left(\frac{1}{\hat{x}(x)}\right) .
$$

Leakage-Distortion Region under Log-Loss Distortion

Theorem

For the K-round interaction mechanism the leakage-distortion region under log-loss distortion, is given by:

$$
\begin{aligned}
\left\{\left(L_{1}, L_{2}, D_{1}, D_{2}\right): L_{1}\right. & \geq I\left(Y_{1} ; U_{1}, \ldots, U_{K}, X_{2}\right), \\
L_{2} & \geq I\left(Y_{2} ; U_{1}, \ldots, U_{K}, X_{1}\right) \\
D_{1} & \geq H\left(X_{1} \mid U_{1}, \ldots, U_{K}, X_{2}\right) \\
D_{2} & \left.\geq H\left(X_{2} \mid U_{1}, \ldots, U_{K}, X_{1}\right)\right\} .
\end{aligned}
$$

Proof.

The distortion bounds result from applying $\hat{X}_{i}=P\left(X_{i}=x_{i} \mid U_{1}, \ldots, U_{K}, X_{j}\right) i=1,2, j \neq i$

$$
\begin{aligned}
& D_{i} \geq E\left(d\left(X_{i}, \hat{X}_{i}\right)\right) \\
= & \sum_{x_{i}, u_{1}, \ldots, u_{K}} P\left(x_{i}, u_{1}, \ldots, u_{K}\right) \log \left(\frac{1}{P\left(x_{i} \mid u_{1}, \ldots, u_{K}, x_{j}\right)}\right)=H\left(X_{i} \mid U_{1}, \ldots, U_{K}, X_{j}\right),
\end{aligned}
$$

Sum-Leakage vs. Distortion under Log-loss

- Distortion bounds in leakage-distortion region under log loss distortion can be rewritten as:

$$
\begin{aligned}
& I\left(X_{1} ; U_{1}, \ldots, U_{K}, X_{2}\right) \geq \tau_{1} \\
& I\left(X_{2} ; U_{1}, \ldots, U_{K}, X_{1}\right) \geq \tau_{2}
\end{aligned}
$$

- K-round sum leakage under log-loss is:

$$
\min _{\left\{P_{1 k}, P_{2 k}\right\}_{k=1}^{K / 2}} \sum_{i, j=1, i \neq j}^{2} I\left(Y_{i} ; U_{1, \ldots}, U_{K}, X_{j}\right)
$$

such that for all $i, j=1,2, i \neq j$,

$$
I\left(X_{i} ; U_{1}, \ldots U_{K}, X_{j}\right) \geq \tau_{i}
$$

- The optimization problem is not convex because of the non-convexity of the feasible region.
- Problem closely related (an interactive version) to the information bottleneck problem.

Sum-Leakage vs. Distortion under Log-loss

- Recall: K-round sum leakage under log-loss:

$$
\begin{array}{cl}
\underset{\left\{P_{1 k}, P_{2 k}\right\}_{k=1}^{K / 2}}{\operatorname{minimize}} & \sum_{i, j=1, i \neq j}^{2} I\left(Y_{i} ; U_{1}, \ldots, U_{K}, X_{j}\right) \\
\text { subject to } & , I\left(X_{1} ; U_{1}, \ldots U_{K}, X_{2}\right) \geq \tau_{1} \\
& I\left(X_{2} ; U_{1}, \ldots U_{K}, X_{1}\right) \geq \tau_{2} .
\end{array}
$$

- Simplest version of interactive privacy problem: $\mathrm{K}=1$ (non-interactive) with $X_{2}=Y_{2}=\emptyset$.

$$
\min _{P(U \mid X): I(X ; U) \geq \tau} I(Y ; U) .
$$

- Makhdoumi et. al. refer to the optimization problem as privacy funnel. ${ }^{11}$

[^6]
Sum-Leakage vs. Distortion under Log-loss: Privacy Funnel

- Privacy funnel is dual of information bottleneck problem.
- Information bottleneck problem is a well-studied problem introduced by Tishby. ${ }^{12}$
- Can Information bottleneck problem be generalized to interactive setting and applied?

[^7]
Information Bottleneck

- A single-source agent and single-receive agent setting ($X_{2}=\emptyset$ and $Y_{2}=\emptyset$).

- The information bottleneck problem minimizes the compression rate between X and U, while preserving a measure of the average information between U and Y such that $Y \leftrightarrow X \leftrightarrow U$ forms a Markov chain

$$
\min _{P(U \mid X): I(Y ; U) \geq \tau} I(X ; U)
$$

- Tishby et. al. characterized a locally optimal solution to information bottleneck problem by minimizing the Lagrangian of the problem and using KKT conditions. ${ }^{13}$
- They introduced an iterative algorithm to construct a locally optimal solution by applying the fixed-point equations.
- Agglomerative Information bottleneck algorithm is another method to construct a locally optimal solution. In this method, compression rate is minimized by reducing the cardinality of \mathcal{U}.

[^8]
Sum-Leakage under Log-loss: Iterative Algorithm

- Sum leakage optimization under log-loss:

Theorem

Consider the two agent K-round leakage-distortion region and their Markov conditions. The conditional distribution $P_{U_{j} \mid u^{j-1}, x_{(.)}}\left(u_{j} \mid u^{j-1}, x_{(.)}\right)$, for all j, with Lagrange mutipliers β_{1} and β_{2} is the stationary point of

$$
\mathcal{L}=I\left(Y_{1} ; U^{K}, X_{2}\right)+I\left(Y_{2} ; U^{K}, X_{1}\right)-\beta_{1} I\left(X_{1} ; U^{K}, X_{2}\right)-\beta_{2} I\left(X_{2} ; U^{K}, X_{1}\right)
$$

if and only if

$$
\begin{aligned}
P\left(u_{j} \mid u^{j-1}, x_{s}\right) & =\frac{P\left(u^{j}\right)}{\mathcal{Z}\left(x_{1}, x_{2}, u^{j-1}, \beta_{1}, \beta_{2}\right)} \exp \left\{-\beta_{1}^{-1}\left[E_{X_{t} \mid x_{s}, u^{j-1}}\left\{D\left(P\left(y_{1} \mid x_{1}, x_{2}, u^{j-1}\right) \| P\left(y_{1} \mid u^{j}, x_{t}\right)\right)\right\}\right.\right. \\
& \left.\left.+D\left(P\left(y_{2} \mid x_{s}, u^{j-1}\right)| | P\left(y_{2} \mid x_{s}, u^{j}\right)\right)\right]-D\left(P\left(x_{t} \mid x_{s}, u^{j-1}\right)| | P\left(x_{t} \mid u^{j}\right)\right)\right\}
\end{aligned}
$$

for $\{s, t\} \in\{1,2\}$ and $s \neq t$ and for some β_{1} and β_{2}, where $\mathcal{Z}\left(x_{1}, x_{2}, u^{j-1}, \beta_{1}, \beta_{2}\right)$ is a normalization function.

- For each round j, a fixed point equation that can be solved by extending the iterative algorithm of Tishby. Repeat procedure for each j.

Agglomerative Information Bottleneck Method

- Recall: Information bottleneck problem is

$$
\min _{P(U \mid X): I(Y ; U) \geq \tau} I(X ; U)
$$

and $Y \leftrightarrow X \leftrightarrow U$ forms a Markov chain

- Slonim et. al. ${ }^{14}$ propose an agglomerative algorithm.
- The goal is to iteratively find the optimal U.
- It begins with $\mathcal{U}=\mathcal{X}$ and reduces the cardinality of U until the constraints on both X and Y are satisfied.
- They proved this algorithm converges to a local minima of the optimization problem.
- Makhdoumi et. al. applied the agglomerative information bottleneck algorithm to privacy funnel problem.

[^9]
Agglomerative Information Bottleneck Method

Agglomerative Information Bottleneck

```
Algorithm 1: Agglomerative information bottleneck algorithm
    Input: \(\tau\) and \(P_{X, Y}\)
    1: Initialization: \(\mathcal{X}=\mathcal{U}\) and \(P_{U \mid X}(U \mid X)=\mathbf{1}_{\{\mathbf{u}=\mathrm{x}\}}\)
    2: while there exist \(i^{\prime}\) and \(j^{\prime}\) such that \(I\left(Y ; U^{i^{\prime}-j^{\prime}}\right) \geq \tau \quad\) do among
    3: those \(i^{\prime}, j^{\prime}\), let
    4: \(\quad\left\{u_{i}, u_{j}\right\}=\operatorname{argmax} I(X ; U)-I\left(X ; U^{i^{\prime}-j^{\prime}}\right)\)
    5: Merge \(\left\{u_{i}, u_{j}\right\} \rightarrow u_{i j}\)
    6: \(\quad\) Update \(\mathcal{U}=\left\{\mathcal{U}-\left\{u_{i}, u_{j}\right\}\right\} \cup\left\{u_{i j}\right\}\) and \(P_{U \mid X}\)
    7: Output \(P_{U \mid X}\)
```

- Let U^{i-j} be the resulting U from merging u_{i} and u_{j} according to $P\left(u_{i j} \mid x\right)=P\left(u_{i} \mid x\right)+P\left(u_{j} \mid x\right)$.

Interaction under Log-loss: Agglomerative Approach

- Agglomerative algorithm is known for the non-interactive setting $(K=1)$ without correlated side information at receiver agent.

- What if receiver agent has side information?

- How can agglomerative algorithm be applied?
- This is the first step to develop an algorithm for an interactive setting.
- Recall: The iterative setting involves multiple rounds and in each round we transmit to a receiver agent with correlated side information.

Merge and Search Algorithm

- Consider a one-round setting $(K=1)$ with side information at receiver agent.
- The sum-leakage optimization problem under log-loss is given by:

$$
\min _{P(U \mid X)} I(Y ; U, Z) \text { s.t. } I(X ; U, Z) \geq \tau_{1}
$$

- Relative to agglomerative information bottleneck problem: here U is replaced by the tuple (U, Z) and $P(U \mid X)$ by $P(U, Z \mid X)=P(U \mid X) P(Z \mid X)$.
- Merge-and-search algorithm: In the k-th iteration, indices i and j are chosen such that $I\left(X ; U_{i j}^{k}, Z\right) \geq \tau_{1}$ where $U_{i j}^{k}$ is the resulting from merging u_{i} and u_{j} while maximizing $I\left(Y ; U^{k-1} \mid Z\right)-I\left(Y ; U_{i j}^{k} \mid Z\right)$ where U^{k-1} is the output of the algorithm in round $(k-1)$.

Agglomerative Iterative Algorithm for $K=2$

- Consider the two-round setting $(K=2)$.
- By using merge-and-search algorithm iteratively the mechanism (P_{11}, P_{21}) can be found.
- In the first round, for a point-to-point setting with side information X_{2}, the distribution $P_{U_{1} \mid X_{1}}$ can be found.
- In the second round, the cardinality of U_{2} is reduced to decrease $I\left(Y_{2} ; U_{1}, U_{2}, X_{1}\right)$ using $P U_{1}, x_{1}$ computed during the first round. This reduction is computed by merging elements of U_{2} conditioned on U_{1} and X_{2}.

Agglomerative Iterative Algorithm

```
Algorithm: Agglomerative Iterative Algorithm
    For \(k=1, \ldots, K / 2\)
    \(\mathbf{R ( 2 k - 1 )}: \min I\left(Y_{1} ; X_{2}, U_{1}, \ldots, U_{2 k-2}, U_{2 k-1}\right)\)
            over \(P\left(U_{2 k-1} \mid X_{2}, U_{1}, \ldots, U_{2 k-2}\right)\)
            s.t. \(I\left(X_{1} ; U_{2 k_{1}} \mid X_{2}, U_{1}, \ldots, U_{2 k-2}\right) \geq \tau_{2 k-1}\)
    Input (2k-1): \(P\left(X_{1}, Y_{1}\right), P\left(U_{2 k-2}, \ldots, U_{1}, X_{1}, X_{2}\right), \tau_{2 k-1}\)
            Apply the merge-and-search algorithm to find local optimum.
    Output (2k-1): \(P\left(U_{2 k-1} \mid X_{1}, X_{2}, U_{1}, \ldots, U_{2 k-2}\right)\)
    \(\mathbf{R ( 2 k}): \min I\left(Y_{2} ; X_{1}, U_{1}, \ldots, U_{2 k-1}, U_{2 k}\right)\)
        over \(P\left(U_{2 k} \mid X_{1}, U_{1}, \ldots, U_{2 k-1}\right)\)
        s.t. \(I\left(X_{2} ; U_{2 k} \mid X_{1}, U_{1}, \ldots, U_{2 k-1}\right) \geq \tau_{2 k}\)
    Input (2k): \(P\left(X_{2}, Y_{2}\right), P\left(U_{2 k-1}, \ldots, U_{1}, X_{1}, X_{2}\right), \tau_{2 k}\)
        Apply the merge-and-search algorithm to find local optimum.
    Output (2k): \(P\left(U_{2 k} \mid X_{1}, X_{2}, U_{1}, \ldots, U_{2 k-1}\right)\)
    Output : \(P\left(U_{1} \mid X_{1}\right), \ldots, P\left(U_{K} \mid U_{1}, \ldots, U_{K-1}, X_{2}\right)\)
```


Gaussian Sources Under Log-Loss Distortion

- Tishby et. al. proved the mapping $P_{U \mid X}$ that minimizes the information bottleneck problem for jointly Gaussian sources is Gaussian. ${ }^{15}$

$$
\begin{array}{ll}
\min _{\substack{P_{U \mid X} \\
Y \leftrightarrow X \leftrightarrow U}} & I(X ; U) \\
\text { subject to } & I(Y ; U) \geq \tau .
\end{array}
$$

- For the non-interactive (one-way) single source and single receiver agent setting with the leakage-distortion tradeoff, the optimal leakage-minimizing mechanism is Gaussian.

$$
\begin{array}{ll}
\min _{\substack{P_{U \mid X} \\
Y \leftrightarrow X \leftrightarrow U}} & I(Y ; U) \\
\text { subject to } & I(X ; U) \geq \tau .
\end{array}
$$

[^10]
Non-Interactive Private Mechanism with Correlated Side Information Under Log-loss Distortion

Lemma

Suppose (X, Y) and (X, Z) are jointly Gaussian and let $P_{U \mid X}$ be a privacy mechanism such that $U \leftrightarrow X \leftrightarrow Z$ forms a Markov chain. The optimal mechanism $P_{U \mid X}$ minimizing $I(Y ; U, Z)$ subject to $I(X ; U, Z) \geq \tau$ is Gaussian.

Proof.

- Define $V=(U, Z)$. Now, consider the following optimization problem

$\min _{P_{V \mid X}}$	$I(Y ; V)$
subject to	$I(X ; V) \geq \tau$.

- The optimizing mechanism $P_{V \mid X}$, and therefore, the output V are Gaussian.
- Since V and Z are Gaussian, U is Gaussian.

Optimality of a One-Round Gaussian Private Interactive Mechanism

Theorem

Consider a two-agent interactive setting with log-loss distortion and jointly Gaussian sources. The optimal leakage-distortion region can be achieved in one round of interaction.

Proof.

- According to previous lemma, the optimal mechanism for non-interactive setting with side information is Gaussian.
- Since the interactive setting involves a set of K such mechanisms, the tuple $\left(U_{1}, \ldots, U_{K}\right)$ should also be Gaussian, i.e., one round of interaction suffices.

Illustration of the Results

- The US Census dataset is a sample of US population from 1994. $X_{1}=($ age, gender), $X_{2}=$ (ethnicity, gender), $Y_{1}=($ work class $)$, and, $Y_{2}=$ (income level).
- Find the optimal solution by using agglomerative interactive privacy algorithm and compute sum leakage for the two round and the one round interactive mechanism under log-loss distortion at agent B.
- Let $d_{A}=0$ and d_{B} be the log-loss
 distortion measure.
- The blue curve with stars is the leakage for one round from A to B. The red curve with triangles denotes the sum leakage starting from B to A and back to B.

Conclusions

- A K-round private interactive mechanism between two agents with correlated sources was introduced, and the leakage-distortion region for general distortion functions was determined.
- Conditions under which interaction reduces leakage was introduced, and it was illustrated through an example.
- A K-round private interactive mechanism under log-loss distortion was introduced.
- Sum leakage under log loss distortion and an algorithm to find an optimal mechanism for that were introduced.
- Benefit of using interaction under log-loss distortion was discussed.

Future Work

- Evaluating leakage for different classes of statistical inference attacks.
- Extension to the multi-agent $(K>2)$ case.

[^0]: ${ }^{1}$ L. Sankar, S. Kar, R. Tandon, H.V. Poor, "Competitive privacy in the smart grid", Smart Grid Communications (SmartGridComm), IEEE International Conference on, 2011

[^1]: ${ }^{2}$ L. Sankar, S. Rajagopalan, and H. V. Poor, "Utility-privacy tradeoffs in databases: An information theoretic approach" Information forensics and security, IEEE transaction on , vol. 8, no. 6 June 2013
 ${ }^{3}$ L. Sankar, S. Kar, R. Tandon, H.V. Poor, "Competitive privacy in the smart grid", Smart Grid Communications (SmartGridComm), IEEE International Conference on, 2011

[^2]: ${ }^{4}$ A. Kaspi, " Two-way source coding with fidelity criterion" Information theory, IEEE Transaction on, vol 31 no. 6, Nov 1985,
 ${ }^{5}$ N. Ma, P. Ishwar, P. Gupta, "Interactive source coding for function computation in collocated networks" Information theory, IEEE Transaction on, vol 58, no. 7,2012.
 ${ }^{6} \mathrm{~N}$. Ma, P. Ishwar "The infinite message limit of two terminal interactive source coding" Information theory, IEEE Transaction on, vol 31, no. 6, 2013.

[^3]: ${ }^{7}$ N. Tishby, F. Pereira, and, W. Bialek, "The information bottleneck method" DBLP: journals/corr/physics-004057.2000.
 ${ }^{8}$ A. Makhdoumi, S. Salamatian, N. Fawaz, and, M. Medard, "From the information bottleneck to the privacy funnel, Information Theory Workshop(ITW), 2014 IEEE, Nov 2014, pp.501-505 " • •

[^4]: ${ }^{9}$ N. Ma, P. Ishwar. "The infinite message limit of two terminal interactive source coding" Information theory, IEEE Transaction on, vol 31, no. 6.

[^5]: ${ }^{10} \mathrm{~N} . \mathrm{Ma}, \mathrm{P}$. Ishwar. "The infinite message limit of two terminal interactive source coding" Information theory, IEEE Transaction on, vol 31, no. 6.

[^6]: ${ }^{11}$ A. Makhdoumi, S. Salamatian, N. Fawaz, and, M. Medard, "From the information bottleneck to the privacy funnel, Information Theory Workshop(ITW), 2014 IEEE, Nov 2014, pp.501-505 "

[^7]: ${ }^{12}$ N. Tishby, F. Pereira, and, W. Bialek, "The information bottleneck method" DBLP: journals/corr/physics-004057.2000.

[^8]: ${ }^{13} \mathrm{~N}$. Tishby, F. Pereira, and, W. Bialek, "The information bottleneck method" DBLP: journals/corr/physics-004057.2000.

[^9]: ${ }^{14} \mathrm{~N}$. Slonim and N. Tishby, "Agglomerative information bottleneck", Proc. of Neural Information Processing System(NIPS-99)1999.

[^10]: ${ }^{15}$ G. Chechik, A. Globerson, N. Tishby, and, Y. Weiss, "The information bottleneck for Gaussian variables" In journal of Machine Learning Research/2004.

