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Motivation

Many distributed systems need to exchange data amongst di↵erent agents (e.g.,
electric power systems).

Data sharing critical for high fidelity estimation.

However, sharing often inhibited due to privacy/ trust/ security constraints.

Competitive Privacy:1 Can data be shared so as to reveal specific public features of
data while keeping the leakage of private features minimal?

Determine privacy-guaranteed interactive data sharing information-theoretic
mechanisms.

1L. Sankar, S. Kar, R. Tandon, H.V. Poor, “Competitive privacy in the smart grid”, Smart Grid
Communications (SmartGridComm), IEEE International Conference on, 2011
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Problem Description

Consider a two agent setup where each agent has public and private data.

Goal is to minimize the leakage of private data while ensuring the fidelity of public
data over multiple rounds.

Develop leakage-distortion tradeo↵ for interactive setting for various distributions
and distortion measures.
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Related Work: Utility-Privacy Tradeo↵

One-shot data publishing setting:

Sankar et. al.2 introduced an information-theoretic formulation of the utility-privacy
tradeo↵ problem.

Utility modeled as distortion and privacy captured via a mutual information based
leakage.

Database modeled as an n-length sequence from an i.i.d source.

Utility-privacy tradeo↵ captured by the set of achievable distortion-leakage tuples.

Interactive setting:

Sankar et. al.3 consider a two-agent setup with Gaussian distributed correlated
observations at each agent.

Optimal utility-privacy tradeo↵ region shown to be achieved by a Gaussian privacy
mechanism.

Focus of this thesis is on the interactive setting with general distributions and
distortions.

2L. Sankar, S. Rajagopalan, and H. V. Poor, “Utility-privacy tradeo↵s in databases: An information
theoretic approach” Information forensics and security, IEEE transaction on , vol. 8, no. 6 June 2013

3L. Sankar, S. Kar,R. Tandon, H.V. Poor, “Competitive privacy in the smart grid”, Smart Grid
Communications (SmartGridComm), IEEE International Conference on, 2011
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Relationship to Interactive Source Coding:

Utility-privacy tradeo↵ problem does not involve encoders and decoders.
Mutual information used as a measure of information leakage.

Thus, leakage-distortion optimizations have a flavor of rate-distortion optimizations.

Much work on interactive source coding problem by Kaspi4 and Ma et. al..5

Closely related is work by Ma et. al..
Our approach on conditions when interaction helps is similar to Ma. 6

4A. Kaspi, “ Two-way source coding with fidelity criterion” Information theory, IEEE Transaction on, vol 31
no. 6, Nov 1985,

5N. Ma, P. Ishwar, P. Gupta, “Interactive source coding for function computation in collocated networks”
Information theory, IEEE Transaction on, vol 58, no. 7,2012.

6N. Ma, P. Ishwar “The infinite message limit of two terminal interactive source coding” Information theory,
IEEE Transaction on, vol 31, no. 6, 2013.
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Related Work

Information Bottleneck

Goal is to minimize the compression rate of public data subject to constraint on the
log-loss distortion of private data.7

In our problem we minimize information leakage of the private feature while lower
bounding the (mutual) information of the public feature.

One-way non-interactive setting

Under log-loss distortion and mutual information leakage Makhdoumi et. al.8

developed tradeo↵ region.

Use an algorithm based on the agglomerative information bottleneck algorithm.

We generalize an algorithmic solution and highlight the advantages of multiple rounds of
data sharing to reduce leakage.

7N. Tishby, F. Pereira, and, W. Bialek, “The information bottleneck method” DBLP:
journals/corr/physics-004057.2000.

8A. Makhdoumi, S. Salamatian, N. Fawaz, and, M. Medard,“From the information bottleneck to the
privacy funnel, Information Theory Workshop(ITW), 2014 IEEE, Nov 2014, pp.501-505 ”.
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System Model

Consider a two-way interactive model, where agents A and B generate n-length i.i.d.
sequences (X n

1 ,Y
n

1 ) and (X n

2 ,Y
n

2 ), respectively.

The public data at both agents are denoted by X
n

(·) and the correlated private data
by Y

n

(·).

Agent&A& Agent&B&
(X1, Y1) (X2, Y2)

PUK |U1,...,UK�1,X2

PU2|U1,X2

PU1|X1

We assume that the private data is hidden and can only be leaked through the
public data.

Without loss of generality, we assume that agent A initiates the interaction and K is
even.
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K-interactive Privacy Mechanism

Definition

A K -interactive privacy mechanism (n,K , {P1i}K/2
i=1 , {P2i}K/2

i=1 ,D1,D2, L1, L2) is a
collection of K probabilistic mappings such that agent A shares data in the odd rounds
beginning with round 1 and agent B shares in the even rounds such that:

8
><

>:

P11 : X n

1 ! Un

1

P1, i+1
2

: (X n

1 ,Un

1 ,Un

2 , . . . ,Un

i�1) ! Un

i for i = 3, 5, . . . ,K � 1

P2, i

2
: (X n

2 ,Un

1 , . . . ,Un

i�1) ! Un

i for i = 2, 4, . . . ,K

At the end of K -rounds A and B reconstruct sequences X̂ n

2 and X̂
n

1 , respectively, where
X̂

n

1 = g2(X n

2 ,U
n

1 , . . . ,U
n

K ) and X̂
n

2 = g1(X n

1 ,U
n

1 , . . . ,U
n

K ), and g1 and g2 are appropriately
chosen functions.
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Cont’d.

The set of K/2 mechanism pairs {P1j ,P2j}
K

2
j=1 is chosen to satisfy

1
n

1X

i=1

E(d1(X1i , X̂1i ))  D1 + ✏

1
n

1X

i=1

E(d2(X2i , X̂2i ))  D2 + ✏

1
n
I (Y n

1 ;U
n

1 , . . . ,U
n

K ,X
n

2 )  L1 + ✏

1
n
I (Y n

2 ;U
n

1 , . . . ,U
n

K ,X
n

1 )  L2 + ✏

where d1(·, ·) and d2(·, ·) are the given distortion measures.
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Leakage-Distortion Region Theorem

Theorem

For target distortion pair (D1,D2), and for a K -round mechanism the leakage-distortion

region is given as

{(L1, L2,D1,D2) : L1 � I (Y1;U1, . . . ,UK ,X2),

L2 � I (Y2;U1, . . . ,UK ,X1),

E(d1(X1, X̂1))  D1,

E(d2(X2, X̂2))  D2}

such that for all k, the following Markov chains hold:

Y1 $ (U1, . . . ,U2k�1,X2) $ U2k

Y2 $ (U1, . . . ,U2k�2,X1) $ U2k�1

with |Ul |  |Xil
|.(
Q

l�1
j=1 |Uj |) + 1 where il = 1 if l is odd and il = 2 if l is even.
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Sum Leakage-Distortion Function

Assume interaction from agent A such that the last round of interaction is from
agent B to agent A.

Definition

Define a compact subset of a finite Euclidean space as

PA

K :={PUK |X1,Y1,X2,Y2
: PUK |X1,Y1,X2,Y2

= PU1|X1PU2|U1,X2 . . . ,PUK |UK�1,X2
,

E(d1(X1, X̂1))  D1,E(d1(X2, X̂2))  D2}

Definition

The sum leakage-distortion function from agent A over K rounds is

L
A

sum,K (D1,D2) = min
P
UK |X1,Y1,X2,Y2

2PA

K

{I (Y1;U1, . . . ,UK ,X2) + I (Y2;U1, . . . ,UK ,X1)}.
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Property of Lsum,k

Lemma

For all k:

(1) L
A

sum,(k�1) � L
A

sum,k . Similarly, L
B

sum,(k�1) � L
B

sum,k .

(2) L
B

sum,(k�1) � L
A

sum,k . Similarly, L
A

sum,(k�1) � L
B

sum,k .

Proof.

For all k,

(1) follows from the fact that any (k � 1)-round interactive mechanism starting at
one of the agent (e.g., A) can be considered as special case of k-round interactive
mechanism starting at the same agent with PUk |Uk�1,X1

= 0.

The bounds in (2) follows from the fact that any (k � 1)-round interactive
mechanism initiated at B (resp. A) can be considered as a special case of a k-round
interactive mechanism initiated at A (resp. B) with PU1|X1 = 0 (resp. PU1|X2 = 0).
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Property of Lsum,1

Definition

Lsum,1 := limk!1 L
A

sum,k = limk!1 L
B

sum,k .

From previous lemma, LA

sum,k and L
B

sum,k are both non-increasing in k and bounded
from below, and thus their limits exist.

From previous lemma, LA

sum,k�1 � L
B

sum,k � L
A

sum,k+1 Thus, taking limits, since both
L
A

sum,k and L
B

sum,k converge, we have that

Lsum,1 := lim
k!1

L
A

sum,k = lim
k!1

L
B

sum,k .

Therefore, Lsum,1 is well-defined.
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When Does Interaction Help?

From both a theoretical and an application viewpoint, it is of much interest to
understand whether interaction reduces privacy leakage or if a single round of data
sharing su�ces for a fixed privacy budget (leakage constraint).

Ma et. al. considered interactive source coding problem and discussed conditions
under which interaction helps.9

Ma’s approach can be applied to our interactive leakage-distortion problem with
both public and private variables.

9N. Ma, P. Ishwar. “The infinite message limit of two terminal interactive source coding” Information
theory, IEEE Transaction on, vol 31, no. 6.
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Leakage Reduction Function

To characterize Lsum,1, introduce a leakage-reduction function.

Definition

The leakage reduction function for a K -round interactive mechanism initiated at agent A
is defined as

⌘A

K (PX1,Y1,X2,Y2 ,D1,D2) := H(Y1) + H(Y2)� L
A

sum,K (D1,D2)

= max
P
UK |X1,Y1,X2,Y2

2PA

K

[H(Y1|UK ,X2) + H(Y2|UK ,X1)]

⌘A

K (PX1,Y1,X2,Y2 ,D1,D2) depends on the distributions PX1,Y1|X2 and PX2,Y2|X1 .

Evaluating ⌘A

K is equivalent to evaluating L
A

sum,K .

⌘A

K and ⌘B

K are non-decreasing functions of K .

For ⌘1 = limK!1 ⌘A

K , we have L
A

sum,1 = H(Y1) + H(Y2)� ⌘1.

L
A

sum,0 = L
B

sum,0 = Lsum,0 = I (Y1;X2) + I (Y2;X1).

⌘0 = H(Y1|X2) + H(Y2|X1).
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Marginal-Perturbation-Closed Family of Joint Distributions

⌘A

K = max
P
UK |X1,Y1,X2,Y2

2PA

K

[H(Y1|UK ,X2) + H(Y2|UK ,X1)] depends on PX1,Y1,X2,Y2

only through PX2,Y2|X1 and PX1,Y1|X2 .

Definition

The marginal perturbation set PX2,Y2|X1 for a given joint distribution PX1,Y1,X2,Y2 is
defined as

PX2,Y2|X1(PX1,Y1,X2,Y2) ={P 0
X1,Y1,X2,Y2

: P 0
X1,Y1,X2,Y2

<< PX1,Y1,X2,Y2 ,P
0
X2,Y2|X1

= PX2,Y2|X1}

where ” << ” is majorizing operator.

PX1,Y1|X2(PX1,Y1,X2,Y2) can similarly be defined.

⌘A

K (PX1,Y1,X2,Y2 ,D1,D2) depends on the distributions PX2,Y2|X1 and PX1,Y1|X2 .

Su�cient to focus on the family of distributions which is closed with respect to
PX2,Y2|X1 and PX1,Y1|X2 .

Definition

A family of joint distributions PX1,Y1,X2,Y2 is marginal-perturbation-closed if for all
PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 , PX2,Y2|X1 [ PX1,Y1|X2 ✓ PX1,Y1,X2,Y2 .
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Lemma: Relationship between (k � 1)-Round and k-Round Interactive
Mechanism

Lemma

1 For all k 2 Z+
and PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 we have

⌘A
k
(PX1,Y1,X2,Y2 ,D1,D2) =

max
P(U1|X1)

8
>>><

>>>:
max

8u12U1,(D
0
1,D2)u12D2

(D0
1,D2)u1 :E((D0

1,D2)u1 )(D1,D2)

8
<

:
X

u12U1

g(u1)

9
=

;

9
>>>=

>>>;
.

where g(u1) = P(u1)⌘Bk�1(PX1,Y1,X2,Y2|u1 , (D
0
1,D2)u1 ).

2 For all k 2 Z+ and all (qX1,Y1,X2,Y2 ,D1,D2) 2 PX1,Y1,X2,Y2 ⇥D2, ⌘A
k
is concave on

PX2,Y2|X1
⇥D2.

3 For all k 2 Z+ and all (qX1,Y1,X2,Y2 ,D1,D2) 2 PX1,Y1,X2,Y2 ⇥D2, if

⌘ : PX1,Y1,X2,Y2 ⇥D2 ! R is concave on PX2,Y2|X1
⇥D2 and if for all

(PX1,Y1,X2,Y2 ,D1,D2) 2 PX2,Y2|X1
(qX1,Y1,X2,Y2 )⇥D2,

⌘B
k�1(PX1,Y1,X2,Y2 ,D1,D2)  ⌘(PX1,Y1,X2,Y2 ,D1,D2), then for all

(PX1,Y1,X2,Y2 ,D1,D2) 2 PX2,Y2|X1
(qX1,Y1,X2,Y2 )⇥D2,

⌘A
k
(PX1,Y1,X2,Y2 ,D1,D2)  ⌘(PX1,Y1,X2,Y2 ,D1,D2).
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Sketch of Proof

Sketch of Proof.

part 110

To construct a k-round interactive mechanism, we first pick U1.
For each realization of U1 = u1, construct the remaining by considering (k � 1)-round
initiated at agent B but with di↵erent data distribution
PX1,Y1,X2,Y2|U1=u1

2 PX2,Y2|X1
(PX1,Y1,X2,Y2 ).

Distortion vector (D0
1,D2)u1 for each realization U1 = u1 in (k � 1)-round interactive

subproblem could be di↵erent from the original distortion vector (D1,D2).P
u1
(D0

1,D2)u1PU1 (u1) = (D1,D2).

part 2
By using the relationship between (k � 1)-round and k-round interactive mechanism
and definition of concave function, ⌘A

k
is concave on PX2,Y2|X1

⇥D2.

part 3
Using the relationship between (k � 1)-round and k-round interactive mechanism and
⌘B
k�1  ⌘ imply ⌘A

k
 ⌘.

By reversing the roles of agent A and B in Lemma, we can prove the same lemma
for agent B.

10N. Ma, P. Ishwar. “The infinite message limit of two terminal interactive source coding” Information
theory, IEEE Transaction on, vol 31, no. 6.
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⌘0-Majorizing Family of Functionals

Interaction does not help if ⌘A

k = ⌘B

k+1.

⌘B

k+1 is concave on PX1,Y1|X2 (previous lemma).

Interaction does not help if ⌘A

k is concave on PX1,Y1|X2 .

To characterize ⌘1, introduce a set of functionals as follows:

Definition

⌘0-majorizing family of functionals FD(PX1,Y1,X2,Y2) is the set of all functionals
⌘ : PX1,Y1,X2,Y2 ⇥D2 ! R satisfying

1 For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and (D1,D2) 2 D2,
⌘(PX1,Y1,X2,Y2 ,D1,D2) � ⌘0(PX1,Y1,X2,Y2 ,D1,D2).

2 For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 , ⌘ is concave on PX2,Y2|X1
.

3 For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 , ⌘ is concave on PX1,Y1|X2
.

Bahman Mora↵ah (ASU) Private Interactive Mechanism 20 / 49 August 19, 2015 20 / 49



Properties of ⌘1

Theorem

⌘1(PX1,Y1,X2,Y2 ,D1,D2) 2 FD(PX1,Y1,X2,Y2) and ⌘1 is the least element of the set

FD(PX1,Y1,X2,Y2).

Proof.

⌘1 is in ⌘0-majorizing family of functionals FD(PX1,Y1,X2,Y2) since:
Condition 1 in definition of ⌘0-majorizing family of functionals is satisfied since
Lsum,1  Lsum,0.
Condition 2 in definition of ⌘0-majorizing family of functionals is satisfied since
⌘1 = limk!1⌘A

k
and ⌘A

k
is concave on PX2,Y2|X1

.
Condition 3 in definition of ⌘0-majorizing family of functionals is satisfied since
⌘1 = limk!1⌘B

k
and ⌘B

k
is concave on PX1,Y1|X2

.

Proof that ⌘1 is the smallest element of FD(PX1,Y1,X2,Y2):

By using induction on k in addition to part 3 of Lemma , if ⌘B
k�1  ⌘, then ⌘A

k
 ⌘,

⌘1 is the least element of FD(PX1,Y1,X2,Y2 ).
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Conditions under which Interaction Does Not Help

Theorem

The following equivalent conditions establish when interaction does not help.

1 For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and D = (D1,D2) 2 D2
,

⌘A

k (PX1,Y1,X2,Y2 ,D) = ⌘1(PX1,Y1,X2,Y2 ,D).

2 For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and D = (D1,D2) 2 D2
,

⌘A

k (PX1,Y1,X2,Y2 ,D) = ⌘B

k+1(PX1,Y1,X2,Y2 ,D).

3 For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and D = (D1,D2) 2 D2
, ⌘A

k is concave on

PX1,Y1|X2(PX1,Y1,X2,Y2)⇥D2
.

Proof.

Condition 1 implies condition 2 since ⌘A

k  ⌘B

k+1  ⌘1. This inequality holds due to
L
A

sum,k � L
B

sum,k+1.

Condition 2 implies condition 3 since ⌘B

k+1(PX1,Y1,X2,Y2 ,D1,D2) is concave on
PX1,Y1|X2(PX1,Y1,X2,Y2)⇥D2.

Condition 3 implies condition 1 since concavity of ⌘A

k on PX2,Y2|X1 in addition to the
fact that ⌘A

k � ⌘0 lead ⌘A

k 2 FD(PX1,Y1,X2,Y2). According to theorem, ⌘1 is the least
element of FD(PX1,Y1,X2,Y2), thus ⌘

A

k � ⌘1. Therefore, ⌘A

k = ⌘1.
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Interaction Reduces Leakage: Illustration

Let (X1,X2) be a DSBS(p) with PX1,X2(0, 0) = PX1,X2(1, 1) =
1�p

2 and
PX1,X2(1, 0) = PX1,X2(0, 1) =

p

2 .

(X1,Y1) and (X2,Y2) are correlated as follows:

Y1 = X1 + Z1 Z1 ⇠ Ber(p)

Y2 = X2 + Z2 Z2 ⇠ Ber(p)

and Z1 and Z2 are independent of X1 and X2.

Let dA = 0 and consider an erasure distortion measure dB(·, ·) as:

dB(x1, x̂1) =

8
<

:

0, if x̂1 = x1

1, if x̂1 = e

1, if x̂1 = 1� x1.
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Theorem

Theorem

With one round from agent A to agent B, the optimal solution is

L
A

sum,1(0,D2) =2� [(1� D2)H(p) + (1 + D2)H(2p(1� p))].

Proof.

L
A

sum,1(0,D2) = minPU1|X1
[I (X1;Y2) + I (Y1;U1,X2)]

L
A

sum,1(0,D2) = 2�H(2p(1�p))�maxP(U1|X1) H(Y1|U1,X2) where U = {0, e, 1} and

P(U1|X1) =

8
>>>>>><

>>>>>>:

↵0, if x = 0 and u = e

1� ↵0, if x = 0 and u = 0

↵1, if x = 1 and u = e

1� ↵1, if x = 1 and u = 1

0, otherwise
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Proof.

E(dB(X1,U1)) = PX1(0)↵0 + PX1(1)↵1  D2.

P(X1 = 0,U1 = 1) = P(X1 = 1,U1 = 0) = 0 since otherwise E(dB(X1,U1)) = 1.

Simplify L
A

sum,1(0,D2)

H(Y1|U1,X2) =
1
2
(1� ↵0)H(p) +

1
2
(1� ↵1)H(p)

+[
↵0

2
(1� p) +

↵1

2
p]H(

(1� p)2↵0 + p
2↵1

(1� p)↵0 + p↵1
)

+[
↵0

2
p +

↵1

2
(1� p)]H(

p(1� p)↵0 + p(1� p)↵1

p↵0 + (1� p)↵1
)

H(Y1|U1,X2) is maximized if ↵0 = ↵1 = ↵, then the result is attained.
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Sum Leakage for K = 2

Consider the sum leakage-distortion for for two-round of interaction starting from
agent B in round 1 and returning from A to B in round 2, K = 2.

Set the conditional distribution PU1|X2 as a BSC(↵) and PU2|X1,U1 as in the following

table and let X̂1 = U2.

PU2|X1,U1 u2 = 0 u2 = e u2 = 1
x1 = 0, u1 = 0 1� � � 0
x1 = 1, u1 = 0 0 1 0
x1 = 0, u1 = 1 0 1 0
x1 = 1, u1 = 1 0 � 1� �

For p = 0.03, ↵ = 0.35, and � = 0.55,
L
B

sum,2(0,D2) = I (Y2;U1,X1) + I (Y1;U2|U1,X2) = 1.1876

Corresponding distortion is D2 = E(d(X1, X̂1)) = 0.8116.

By comparison, the one-round setting for this distortion is
L
A

sum,1(0, 0.8116) = 1.3832.
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Gaussian Sources: Interactive Mechanism

Consider (X1,Y1) ⇠ N(0,⌃X1,Y1), (X2,Y2) ⇠ N(0,⌃X2,Y2), and
(X1,X2) ⇠ N(0,⌃X1,X2).

For jointly Gaussian sources subject to mean square error distortion constraints, one
round of interaction su�ces to achieve the Leakage-distortion bound.

Theorem

For the private interactive mechanism, the leakage-distortion region under mean square

error distortion constraints consist of all tuples (L1, L2,D1,D2) satisfying

L1 �
1
2
log(

�2
Y1

↵2D1 + �2
Y1|X1,X2

)

L2 �
1
2
log(

�2
Y2

�2D2 + �2
Y2|X1,X2

)

where ↵ = cov(X1,Y1)
�2
Y1

and � = cov(X2,Y2)
�2
Y2

.
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Proof: Converse.

Proof: Converse.

If (X1,Y1) is jointly Gaussian, we can write Y1 = ↵X1 + Z1, where Z1 is a zero mean Gaussian
random variable independent of X1.

L1 + ✏ �
1

n
I (Y n

1 ;U
n

1 , . . . ,U
n

K
,Xn

2 )

=
1

n
[nh(Y1)�

nX

i=1

h(Y1i |Un

1 , . . . ,U
n

K
,Xn

2 ,Y
i�1
1 )]

�h(Y1)�
1

n

nX

i=1

h(Y1i |Un

1 , . . . ,U
n

K
,Xn

2 )

�h(Y1)�
1

n

nX

i=1

1

2
log(2⇡e(Var(Y1i |Un

1 , . . . ,U
n

K
,Xn

2 )))

�h(Y1)�
1

2
log(2⇡e

1

n

nX

i=1

(Var(Y1i |Un

1 , . . . ,U
n

K
,Xn

2 )))

�h(Y1)�
1

2
log(2⇡e

1

n

nX

i=1

(Var(↵X1i + Z1i |Un

1 , . . . ,U
n

K
,Xn

2 )))

�
1

2
log(

�2
Y1

↵2D1 + �2
Y1|X1,X2

)

Similarly, we can prove L2 � 1
2 log(

�2
Y2

�2D2+�2
Y2|X1,X2

).
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Proof: Achievability.

Proof: Achievability.

The sequence U
n

1 is chosen such that the ‘test channel’ from U1 to X1 yields
U1 = X1 +V1, where V1 is Gaussian and independent of the rest of random variables,
with variance Q chosen to satisfy distortion condition D1 and X̂1 = E [X1|U1,X2].

For such a system, the achievable distortion is D1 = E(Var(X1|U1,X2)) (no
interaction is required).
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Log-Loss Distortion

Definition

For a random variable X 2 X and its reproduction alphabet X̂ as the set of probability
measures on X , the log-loss distortion is defined as

d(x , x̂) = log(
1

x̂(x)
).

Bahman Mora↵ah (ASU) Private Interactive Mechanism 30 / 49 August 19, 2015 30 / 49



Leakage-Distortion Region under Log-Loss Distortion

Theorem

For the K -round interaction mechanism the leakage-distortion region under log-loss distortion, is

given by:

{(L1, L2,D1,D2) : L1 � I (Y1;U1, . . . ,UK ,X2),

L2 � I (Y2;U1, . . . ,UK ,X1),

D1 � H(X1|U1, . . . ,UK ,X2)

D2 � H(X2|U1, . . . ,UK ,X1)}.

Proof.

The distortion bounds result from applying X̂i = P(Xi = xi |U1, . . . ,UK ,Xj) i = 1, 2, j 6= i

Di � E(d(Xi , X̂i ))

=
X

xi ,u1,...,uK

P(xi , u1, . . . , uK ) log(
1

P(xi |u1, . . . , uK , xj)
) = H(Xi |U1, . . . ,UK ,Xj),
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Sum-Leakage vs. Distortion under Log-loss

Distortion bounds in leakage-distortion region under log loss distortion can be
rewritten as:

I (X1;U1, . . . ,UK ,X2) � ⌧1

I (X2;U1, . . . ,UK ,X1) � ⌧2.

K -round sum leakage under log-loss is:

min
{P1k ,P2k}

K/2
k=1

2X

i,j=1,i 6=j

I (Yi ;U1,...,UK ,Xj)

such that for all i , j = 1, 2, i 6= j ,

I (Xi ;U1, ...UK ,Xj) � ⌧i .

The optimization problem is not convex because of the non-convexity of the feasible
region.

Problem closely related (an interactive version) to the information bottleneck
problem.
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Sum-Leakage vs. Distortion under Log-loss

Recall: K -round sum leakage under log-loss:

minimize
{P1k ,P2k}

K/2
k=1

2X

i,j=1,i 6=j

I (Yi ;U1,...,UK ,Xj)

subject to , I (X1;U1, ...UK ,X2) � ⌧1

I (X2;U1, ...UK ,X1) � ⌧2.

Simplest version of interactive privacy problem: K=1 (non-interactive) with
X2 = Y2 = ;.

min
P(U|X ):I (X ;U)�⌧

I (Y ;U).

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

Makhdoumi et. al. refer to the optimization problem as privacy funnel.11

11A. Makhdoumi, S. Salamatian, N. Fawaz, and, M. Medard,“From the information bottleneck to the
privacy funnel, Information Theory Workshop(ITW), 2014 IEEE, Nov 2014, pp.501-505 ”.
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Sum-Leakage vs. Distortion under Log-loss: Privacy Funnel

Privacy funnel is dual of information bottleneck problem.

Information bottleneck problem is a well-studied problem introduced by Tishby.12

Can Information bottleneck problem be generalized to interactive setting and
applied?

12N. Tishby, F. Pereira, and, W. Bialek, “The information bottleneck method” DBLP:
journals/corr/physics-004057.2000.
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Information Bottleneck

A single-source agent and single-receive agent setting (X2 = ; and Y2 = ;).

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

The information bottleneck problem minimizes the compression rate between X and
U, while preserving a measure of the average information between U and Y such
thatY $ X $ U forms a Markov chain

min
P(U|X ):I (Y ;U)�⌧

I (X ;U).

Tishby et. al. characterized a locally optimal solution to information bottleneck
problem by minimizing the Lagrangian of the problem and using KKT conditions.13

They introduced an iterative algorithm to construct a locally optimal solution by
applying the fixed-point equations.

Agglomerative Information bottleneck algorithm is another method to construct a
locally optimal solution. In this method, compression rate is minimized by reducing
the cardinality of U .

13N. Tishby, F. Pereira, and, W. Bialek, “The information bottleneck method” DBLP:
journals/corr/physics-004057.2000.
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Sum-Leakage under Log-loss: Iterative Algorithm

Sum leakage optimization under log-loss:

Theorem

Consider the two agent K-round leakage-distortion region and their Markov conditions.

The conditional distribution PUj |Uj�1,X(.)
(uj |uj�1, x(.)), for all j , with Lagrange mutipliers

�1 and �2 is the stationary point of

L = I (Y1;U
K ,X2) + I (Y2;U

K ,X1)� �1I (X1;U
K ,X2)� �2I (X2;U

K ,X1)

if and only if

P(uj |uj�1, xs) =
P(uj )

Z(x1, x2, uj�1,�1,�2)
exp{���1

1 [E
Xt |Xs ,uj�1{D(P(y1|x1, x2, uj�1)||P(y1|uj , xt))}

+D(P(y2|xs , uj�1)||P(y2|xs , uj ))]� D(P(xt |xs , uj�1)||P(xt |uj ))}

for {s, t} 2 {1, 2} and s 6= t and for some �1 and �2, where Z(x1, x2, u
j�1,�1,�2) is a

normalization function.

For each round j , a fixed point equation that can be solved by extending the
iterative algorithm of Tishby. Repeat procedure for each j .
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Agglomerative Information Bottleneck Method

Recall: Information bottleneck problem is

min
P(U|X ):I (Y ;U)�⌧

I (X ;U).

and Y $ X $ U forms a Markov chain

Slonim et. al.
14 propose an agglomerative algorithm.

The goal is to iteratively find the optimal U.

It begins with U = X and reduces the cardinality of U until the constraints on both
X and Y are satisfied.

They proved this algorithm converges to a local minima of the optimization problem.

Makhdoumi et. al. applied the agglomerative information bottleneck algorithm to
privacy funnel problem.

14N. Slonim and N. Tishby, “Agglomerative information bottleneck”, Proc. of Neural Information Processing
System(NIPS-99)1999.
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Agglomerative Information Bottleneck Method

Agglomerative Information Bottleneck

Algorithm 1: Agglomerative information bottleneck algorithm
Input: ⌧ and PX ,Y

1: Initialization: X = U and PU|X (U|X ) = 1{u=x}

2: while there exist i 0 and j
0 such that I (Y ;U i

0�j
0
) � ⌧ do among

3: those i
0, j 0, let

4: {ui , uj} = argmaxI (X ;U)� I (X ;U i
0�j

0
)

5: Merge {ui , uj} ! uij

6: Update U = {U � {ui , uj}} [ {uij} and PU|X
7: Output PU|X

Let U i�j be the resulting U from merging ui and uj according to
P(uij |x) = P(ui |x) + P(uj |x).
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Interaction under Log-loss: Agglomerative Approach

Agglomerative algorithm is known for the non-interactive setting (K=1) without
correlated side information at receiver agent.

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

What if receiver agent has side information?

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

Z

How can agglomerative algorithm be applied?

This is the first step to develop an algorithm for an interactive setting.

Recall: The iterative setting involves multiple rounds and in each round we transmit
to a receiver agent with correlated side information.
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Merge and Search Algorithm

Consider a one-round setting (K = 1) with side information at receiver agent.

The sum-leakage optimization problem under log-loss is given by:

min
P(U|X )

I (Y ;U,Z) s.t. I (X ;U,Z) � ⌧1

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

Z

Relative to agglomerative information bottleneck problem: here U is replaced by the
tuple (U,Z) and P(U|X ) by P(U,Z |X ) = P(U|X )P(Z |X ).

Merge-and-search algorithm: In the k-th iteration, indices i and j are chosen such
that I (X ;Uk

ij ,Z) � ⌧1 where U
k

ij is the resulting from merging ui and uj while
maximizing I (Y ;Uk�1|Z)� I (Y ;Uk

ij |Z) where U
k�1 is the output of the algorithm

in round (k � 1).
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Agglomerative Iterative Algorithm for K = 2

Consider the two-round setting (K = 2).

By using merge-and-search algorithm iteratively the mechanism (P11,P21) can be
found.

In the first round, for a point-to-point setting with side information X2, the
distribution PU1|X1 can be found.

In the second round, the cardinality of U2 is reduced to decrease I (Y2;U1,U2,X1)
using PU1,X1 computed during the first round. This reduction is computed by
merging elements of U2 conditioned on U1 and X2.
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Agglomerative Iterative Algorithm

Algorithm: Agglomerative Iterative Algorithm
For k = 1, . . . ,K/2
R(2k-1): min I (Y1;X2,U1, . . . ,U2k�2,U2k�1)

over P(U2k�1|X2,U1, . . . ,U2k�2)
s.t. I (X1;U2k1 |X2,U1, . . . ,U2k�2) � ⌧2k�1

Input (2k-1): P(X1,Y1), P(U2k�2, . . . ,U1,X1,X2), ⌧2k�1

Apply the merge-and-search algorithm to find local optimum.
Output (2k-1): P(U2k�1|X1,X2,U1, . . . ,U2k�2)

R(2k): min I (Y2;X1,U1, . . . ,U2k�1,U2k)
over P(U2k |X1,U1, . . . ,U2k�1)
s.t. I (X2;U2k |X1,U1, . . . ,U2k�1) � ⌧2k

Input (2k): P(X2,Y2), P(U2k�1, . . . ,U1,X1,X2), ⌧2k
Apply the merge-and-search algorithm to find local optimum.

Output (2k): P(U2k |X1,X2,U1, . . . ,U2k�1)
Output : P(U1|X1), . . . ,P(UK |U1, . . . ,UK�1,X2)
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Gaussian Sources Under Log-Loss Distortion

Tishby et. al. proved the mapping PU|X that minimizes the information bottleneck
problem for jointly Gaussian sources is Gaussian.15

min
PU|X

Y$X$U

I (X ;U)

subject to I (Y ;U) � ⌧.

For the non-interactive (one-way) single source and single receiver agent setting with
the leakage-distortion tradeo↵, the optimal leakage-minimizing mechanism is
Gaussian.

min
PU|X

Y$X$U

I (Y ;U)

subject to I (X ;U) � ⌧.

15G. Chechik, A. Globerson, N. Tishby, and, Y. Weiss, “The information bottleneck for Gaussian variables”
In journal of Machine Learning Research/2004.
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Non-Interactive Private Mechanism with Correlated Side Information Under
Log-loss Distortion

Lemma

Suppose (X ,Y ) and (X ,Z) are jointly Gaussian and let PU|X be a privacy mechanism

such that U $ X $ Z forms a Markov chain. The optimal mechanism PU|X minimizing

I (Y ;U,Z) subject to I (X ;U,Z) � ⌧ is Gaussian.

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

Z

Proof.

Define V = (U,Z). Now, consider the following optimization problem

min
PV |X

I (Y ;V )

subject to I (X ;V ) � ⌧.
.

The optimizing mechanism PV |X , and therefore, the output V are Gaussian.

Since V and Z are Gaussian, U is Gaussian.
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Optimality of a One-Round Gaussian Private Interactive Mechanism

Theorem

Consider a two-agent interactive setting with log-loss distortion and jointly Gaussian

sources. The optimal leakage-distortion region can be achieved in one round of

interaction.

Proof.

According to previous lemma, the optimal mechanism for non-interactive setting
with side information is Gaussian.

Since the interactive setting involves a set of K such mechanisms, the tuple
(U1, . . . ,UK ) should also be Gaussian, i.e., one round of interaction su�ces.

Bahman Mora↵ah (ASU) Private Interactive Mechanism 45 / 49 August 19, 2015 45 / 49



Illustration of the Results

The US Census dataset is a sample of
US population from 1994. X1 =(age,
gender), X2 = (ethnicity, gender),
Y1 =(work class), and, Y2 =(income
level).

Find the optimal solution by using
agglomerative interactive privacy
algorithm and compute sum leakage
for the two round and the one round
interactive mechanism under log-loss
distortion at agent B.

Let dA = 0 and dB be the log-loss
distortion measure.

The blue curve with stars is the
leakage for one round from A to B.
The red curve with triangles denotes
the sum leakage starting from B to A
and back to B.
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Conclusions

A K -round private interactive mechanism between two agents with correlated
sources was introduced, and the leakage-distortion region for general distortion
functions was determined.

Conditions under which interaction reduces leakage was introduced, and it was
illustrated through an example.

A K -round private interactive mechanism under log-loss distortion was introduced.

Sum leakage under log loss distortion and an algorithm to find an optimal
mechanism for that were introduced.

Benefit of using interaction under log-loss distortion was discussed.
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Future Work

Evaluating leakage for di↵erent classes of statistical inference attacks.

Extension to the multi-agent (K > 2) case.
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