PACKING AND COVERING LEMMA $+$ COMMUNICATION FOR COMPUTING

 \mathbf{e}^{\prime} defined by

تصملاته

Department of Electrical Engineering of Arizona State University

Bahman Moraffah

OUTLINE

 $C*1$

 \mathfrak{C} .

Packing lemma

me

- Covering lemma
- Communication for computing

PACKING LEMMA

- \bullet Fix $p(x)$ and channel $p(y|x)$
- \triangleq Now, according to p(x), construct 2^{nR} code words, i.i.d.

with length n :

 \mathcal{C}

 $X^n(m) \sim \prod_{i=1}^n p(x_i)$ $i=1$

 \hat{X} Suppose $\hat{X}(1)$ is our message and \tilde{Y}^n is our output.

OBJECTIVE

 $C\rightarrow C$

 \hat{Y}^n , $X^n(m)$ m \in [2, 2^{nR}] are NOT Jointly Typical!

 $\mathbf{6}$

 $\widehat{\delta}$

FIED PACKING LEMMA

 $\left(\begin{array}{c}\rightarrow\rightarrow\end{array}\right)$

Probability that \tilde{Y}^n and $X^n(m)$ m $\in [2, 2^{nR}]$ are joint typical goes to zero if $R < I(X; Y)$

 $\mathbf{\hat{X}}^{n}$ (m) and \tilde{Y}^{n} are independent and uniformly chosen.

GENERALIZE PACKING LEMMA

 \curvearrowleft

We generalize packing in 3 steps:

 \mathbf{G}

- 1. \tilde{Y}^n with arbitrary distribution.
- 2. Dependency of code words to each other.
- 3. Structured Code Book.

ARBITRARY DISTRIBUTION

 $\mathbf{\hat{Y}}^n$ is not necessarily the output of channel related to message 1, and it has an arbitrary distribution.

 $\mathbf{\hat{Y}}^n$ We suppose \tilde{Y}^n , $X^n(m)$ are independent, we have: $R < I(X, Y)$

⇒ lim $n\rightarrow\infty$ $P(\exists m \ 1 \leq m \leq 2^{nR} \cdot (X^n(m), \tilde{Y}^n) \in \tilde{\iota}_{\varepsilon}^n(x, y)) = 0$

By looking at proof of previous slide we understand that:

- \triangleright \tilde{Y}^n and $X^n(m)$ m $\in [1, 2^{nR}]$ are independent.
- \triangleright Marginal distribution of $X^n(m)$ should be i.i.d.

❖ So, we don't need independency of code words and independency of each code words and \tilde{Y}^n suffice. To have the same result.

STRUCTURED CODE BOOK

It means we have a relationship or closeness among code words .

* A common way is :

 ~ 2

- \blacktriangleright Let $p(U, X)$.
- Senerate \tilde{U}^n i.i.d distribution of p(U)
- Send \tilde{U}^n through channel $p(X|U)$ 2^{nR} times.

 \triangleright Have 2^{nR} code words according to

 $X^n(m) \sim \prod_{i=1}^n p_{X|U}$ $\sum_{i=1}^{n} p_{X|U}(x_i | \hat{u}_i)$

OBJECTIVE

 \rightarrow

 \hat{X} Suppose $\hat{X}(1)$ is our message and \tilde{Y}^n is our output. We want to find conditions on R such that \tilde{Y}^n and $X^n(m)$ m $\in [2, 2^{nR}]$ would NOT be jointly typical.

 $\mathbf{\hat{y}}$ We know that $X^n(m)$ → U→ \widetilde{Y}^n

CONT.

 $\left(\begin{matrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{matrix}\right)$

We generated \widetilde{U}^n , X^n , \widetilde{Y}^n $i.$ $i.$ $d.$ from $q(u, x, y) = p(u)p(x|u)p(y|u)$ So, the probability which is equal to $p(u, x, y)$ is $2^{-nD(p(u,x,y)||q(u,x,y))} = 2^{-nI(X;Y|U)}$

PACKING LEMMA

 $=$ (3)

Consider p(u, x, y) on (U, X, Y). Suppose \widetilde{Y}^n , \widetilde{U}^n have an arbitrary distribution p(\tilde{U}^n , \tilde{Y}^n). $X^n(m)$ is 2^{nR} sequences such that $P(X^n(m) = x^n | \widetilde{U}^n = \widetilde{u}^n) = \prod p_{X|U}(x_i | \widetilde{u}_i)$ We also have $n(m) \to \tilde{U}^n \to \tilde{Y}^n$ then, $R < I(X; Y | U)$ ⇒ lim $n\rightarrow\infty$ $P(\exists m \ 1 \leq m \leq 2^{nR} : (\widetilde{U}^n, \widetilde{Y}^n, X(m)) \in \widetilde{\iota}_{\mathcal{E}}^n(U, X, Y)) = 0$

COVERING LEMMA

In packing lemma we saw that

 $R \leq I(X; Y) \Rightarrow P\{\exists m \ m \in [1, 2^{nR}] : (X(m), \tilde{Y}^n) \in \tilde{\iota}_{\varepsilon}^n(X, Y)\} \to 0$

No, what if $R > I(X; Y)$?

me

Answer: Covering lemma

COMPARISON

- \triangleleft If number of points is less than $2^{-n(I(X;Y)-\varepsilon)}$ \Rightarrow grey circles have no intersection.
- \triangleq If number of points is greater than $2^{-n(I(X;Y)+\varepsilon)} \Rightarrow$ grey circles $\operatorname{cover} \mathfrak{I}_{\varepsilon}^n$.
- \checkmark So, I(X; Y) causes a change in phase.

 \mathcal{C}

NOTE

 \mathbf{e}

When $R < I(X; Y)$, we don't have a good book for channel coding. we use packing lemma in channel coding and covering lemma in source coding.

COVERING LEMMA

Because, we use this lemma in source coding we are going to change the notation:

 $(U, X, \hat{X}) \sim p(u, x, \hat{x})$ and X^n, U^n have an arbitrary distribution such that:

 $P((U^n, X^n) \in {\tilde{\iota}}_{\mathcal{E}}^{n}(U, X)) \to 1$ and $\hat{X}^n(m)$ $m \in [1, 2^{nR}]$

are generated independently by sending \widetilde{U}^n through $p_{\widehat{X}|U}$

CONT.

 $C*2$

Culto

i.e.

$$
p(\hat{X}^n(m) = \hat{x}^n | U^n = u^n) = \prod_{i=1}^n p_{\hat{X}|U}(\hat{x}_i | u_i)
$$

and

$$
p(\hat{X}^n(1),...,\hat{X}^n(2^{nR}) \mid U^n) = \prod_{m=1}^{2^{nR}} p(\hat{X}^n(m) | u_i)
$$

We also have

mlul

$$
\hat{X}^n(1), \dots, \hat{X}^n(2^{nR}) \to U^n \to X^n
$$

Then

 $R > I(X; \hat{X}|U) \Rightarrow P\{\exists m \in [1, 2^{nR}] : (U^n, X^n, \hat{X}^n(m)) \in \tilde{\iota}_{\mathcal{E}}^n(U, X, \hat{X})\} \to 1$

WYNER- ZIV THEORY FOR A GENERAL FUNCTION OF CORROLATED SOURCE

 ~ 2

 In some cases, The user at decoder will be satisfied with estimating the value of $X = G(Y_1, Y_2)$ instead of Y_2 .

 \mathbf{e}

 \mathbf{G}

 $\mathbf{R}(\mathbf{d})=\min_{\widehat{Y_2}\in p(d)}\mathbf{I}(Y_2;\;\widehat{Y_2}|Y_1)$ $p(d)$ = Set of all \widehat{Y}_2 $\in \widehat{\mathcal{Y}_2}$ which:

$$
\bullet \quad \widehat{Y}_2 \to Y_2 \to Y_4
$$

 $\bullet\quad \, \exists\, f:\; \mathcal{H}_1\ast \widehat{\mathcal{H}_2}\rightarrow \widehat{\mathcal{K}}:E\left(\mathrm{D}(\mathrm{G}(Y_1,Y_2),\,\mathrm{f}(Y_1,\widehat{Y_2}))\right)\leq\; D$

 ζ