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Challenges of dynamic multiple object tracking problem

Track unknown time-varying number of objects (cardinality)

Objects leave, enter or stay in scene: unknown state label/identity

Multiple observations from sensing modalities, possibly dependent, and
unknown measurement-to-object associations

Multiple environmental conditions: high noise levels, clutter, interference

previous time step (k-1) time step k

FULTON schools of engineering Signal Processing & Adaptive Sensing Laboratory



Multiple object tracking methods

Bayesian estimation of object state posterior using
= physics-based models (e.g., constant velocity, maneuvering)
= parametric models (e.g., multi-Bernoulli)

= Joint probabilistic data association, multiple hypothesis testing, joint
multitarget probability density, probability hypothesis density (PHD)

= Labeled multi-target multi-Bernoulli: multi-Bernoulli RFS approximate
multi-object posterior; labeled RFS estimate target identity, requires
high probability of detection [Vo & Vo 2012, 2014]
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Bayesian nonparametric modeling

Model underlying structure/distribution to learn and make predictions from data

= Parametric model: family of distributions with finite number of parameters

= Nonparametric model: distributions with infinite dimensional parameter space
(parameters can grow with complexity of observation )

e.g., Gaussian mixture model (GMM) requires fixed number of clusters vs
Dirichlet process (DP) mixture adapts number of clusters based on data

Nonparametric prior on object states for tracking

» Hierarchical DP: prior on unknown number of modes [E. Fox 2009]
= Bayesian inference: DP mixtures for noise in dynamic system [F. Caron 2008]

= Dependent DP prior, random finite tree: time-varying cardinality & label
[B. Moraffah 2018, 2019]
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Problem Formulation

= Unknown state vector of ¢ th object: X¢k, £=1,...,Ng
= |f objectis present attime (k — 1) and k: ™~
object
xe,k = fk (Xe,k—l) + '|1£’k_1 cardinality
7 \
transition function modeling error
= Measurement vector: Zmk, m=1,..., M

Assumptions: each measurement generated by only one object
& measurements are independent of one another
= |If mth measurement originated from ¢ th object

Zm.k = hr(Xe k) + Wk

relation between / \

measurement noise
measurement & state
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Multiple object tracking using dependent Pitman-Yor process

» Object state label and cardinality at current time step depends on:
» labeled states at previous time step
= previously labeled objects at current time step
= Dependent Pitman-Yor (DPY) process to incorporate learning algorithm as
prior over time-evolving object state distribution based on measurements

= Fully capture state dependence as it models collections of random
distributions related but not identical; process realizations are dependent

= Accurately estimate time evolving object trajectory and cardinality

= Compared to dependent Dirichlet process (DDP): more available clusters
to capture full dependency & likely to have less popular clusters

= DDP: expected number of clusters & log(N)

= DPY: expected number of clusters « N¢ \ .
\ # of objects

concentration discount
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Construction of multiple state prior distribution

Cluster label assignments with unknown cluster parameter 6,
Three possible scenarios for an object in scene at time step k

Scenario 1:

Object ¢ placed in survived & transitioned cluster from time (k — 1) occupied by
previous (£ — 1) clustered objects at time k with probability

discount parameter
cluster parameters \

Hl(Choose jth cluster|0; k, \' ,Qg_l,k> < [Viik—1l; + Vil — d

jth cluster size /

after transitioning jth cluster size at time k

normalization constant: Z[V,;]k_l]i + Z[V’f]i + o

concentration
parameter
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Construction of multiple state prior distribution

Scenario 2:

Object ¢ placed in survived & transitioned cluster from time (k — 1) not uet
occupied by previous (£ — 1) clustered objects at time k with probability

Hg(Choose jth cluster not yet selected|6; g, .. ., Qg_l’k) X [Vk:*|k:—1]j —d

jth cluster size discount
. after transitioning parameter
Scenario 3:
Object Y not placed in existing cluster from time (k — 1), generate new

cluster at time k with probability

II5( Create new cluster |61 g, . . . ,(96—1,/%) x |Vi|d + «
Number of / concentration
created clusters parameter
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Bayesian Inference

= Given configurations at time (k —

DPY}, | DPY)_; ~

= Prior state distribution

%
PUReR[XL g X X1, Oy, B) = S

1), conditional distribution is Pitman-Yor

PY (d, a, {11, 15, HB})

Qyfxeo1, o) fxes )
Qo(xe -1, %2100 1,07 1) (e 1 65 )

Transition probability kernel

base distribution

o fle i ) dH(f)
e

Transition kernel
for parameters

f(:|0) is derived from physical-based model

» Dirichlet process mixture to learn measurement-to-object associations

= Using measurements and physical model, compute posterior distribution
X 1 |21.1, 07, using an MCMC method (Gibbs sampling)
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Simulations: Tracking five objects

Time step of object entering and leaving 2-D scene
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True and DPY estimated (x,y) coordinates
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Simulation: tracking 5 objects, DPY vs labeled multi-Bernoulli (LMB)
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Simulation: tracking 5 objects, DPY vs labeled multi-Bernoulli (LMB)

OSPA (optimal sub-pattern assignment metric) comparison
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Simulations: Comparison of dependent process use

OSPA comparison:
depend Dirichlet process (DDP) & dependent Pitman-Yor process (DPY)
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Conclusions

= Novel family of nonparametric processes naturally capture computational
and inferential needs of a multiple object tracking problem

= Exploit dependent Pitman-Yor process to model dependencies in state prior

» Use Dirichlet process mixture to learn associations between measurements
and objects

= Overall nonparametric Bayesian framework efficiently track labels,
cardinality and trajectories of multiple objects

= MCMC implementation of the proposed tracking algorithm verifies its
simplicity and accuracy.
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Multiple object tracking methods

Bayesian estimation of object state posterior using physics-based models
(e.g., constant velocity, maneuvering) & parametric models (e.g., multi-Bernoulli)

= Joint probabilistic data association: all measurement-to-target associations
[Y. Bar-Shalom 1983]

» Multiple hypothesis testing: measurement-to-track associations as multiple
hypothesis [Y. Bar-Shalom 1998]

» Joint multitarget probability density: joint multitarget conditional density using
independent and coupled partitioning [A. Hero 2003]

» Probability hypothesis density (PHD): model uncertainty using random finite set
(RFS), approximate multi-target Bayes recursion by propagating state posterior
[J. Bell 2005, R. Mahler 2012]

= Multitarget Multi-Bernoulli filter: propagate parameters of multi-Bernoulli RFS to
approximate multi-object posterior; requires high Pp, low Pga [Vo & Vo 2012]

» Labeled Multi-Bernoulli: use labeled RFS to estimate target identity (assuming
finite number of targets) [Vo & Vo 2014]
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Bayesian nonparametric modeling and tracking

Nonparametric prior on object states

= Hierarchical Dirichlet process (HDP): use as prior on unknown number
of modes [E. Fox 2009]

= Bayesian inference: use Dirichlet process mixtures to model noise in
linear dynamic system [F. Caron 2008]

= Dependent Dirichlet process: estimate object time-varying cardinality,
state and label [B. Moraffah 2018]

= Random infinite tree: estimate time-varying cardinality with infinite
random tree [B. Moraffah 2019]
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Construction of multiple prior distribution

» Cluster label assignments with unknown cluster parameter 6,
» Three possible scenarios for an object staying in scene at time step k

Scenario 1: object placed in survived/transitioned cluster from time
(k — 1) occupied by other clustered objects at time k

Scenario 2: object placed in survived/transitioned cluster from time
(k — 1) not occupied by other clustered object at time k

Scenario 3: object not placed in existing cluster from time (k — 1);
generate new cluster parameter attime k
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