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ABSTRACT

An information-theoretic mechanism for privacy-guaranteed interactions is introduced

between two memoryless correlated sources where each source is characterized by a

pair of public and private variables. The interactions are modeled as a collection of

K/2 pairs of random mappings, one pair for each of the K rounds of interactions. The

K/2 random mapping pairs are chosen jointly to minimize the information leakage

(privacy measure) over K rounds of the private variable of each source at the other

source while ensuring that a desired measure of utility (distortion) of the revealed

public variable is satisfied. Arguing that an average case information-theoretic pri-

vacy metric can be appropriate for streaming data settings, this paper shows that

in general, interaction reduces privacy leakage by drawing some parallels between

this problem and the classic interactive source coding problem. Specifically, for the

log-loss distortion metric it is shown that the resulting interaction problem is an ana-

log of an interactive information bottleneck problem for which a one-shot interactive

mechanism is, in general, not optimal. For the resulting problem with a non-convex

constraint space, an algorithm that extends the one-way agglomerative information

bottleneck algorithm to the interactive setting is introduced.
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Chapter 1

INTRODUCTION

Consider an electric power system in which systems operators that manage spe-

cific sub-areas of the network share measurements with each other to obtain precise

estimates of the underlying system state, i.e., complex voltages. Despite the need

for such sharing and the value of high fidelity state estimates, such sharing is often

limited due to privacy considerations; in the process of sharing measurements the

operators do not wish to leak information about a subset of their internal states.

However, since the measurements need to be shared, and often multiple times due to

the iterative nature of power systems state estimation, it is crucial to understand: (a)

the e↵ect of applying privacy-preserving mechanisms on both the utility of estimation

and leakage of the private data; and (b) the e↵ect of multiple rounds of interaction

and sharing on the net leakage.

Privacy in such a distributed “competitive” context is di↵erent from the tradi-

tional statistical database privacy setting in which data is published to ensure statis-

tical value while ensuring that the privacy of any individual in the database is not

comprised. In this database context, di↵erential privacy with guarantees on the worst-

case privacy leakage has emerged as a strong formalism [1]. However, in many data

sharing settings, such as the above-mentioned electric power system example as well

as other streaming data settings (e.g., sensors networks, IoT, even electronic medical

records, etc), the data stream as a whole has private and public features that need

to be hidden and revealed, respectively. In such settings, a statistical approach using

mutual information as a privacy metric is more meaningful in quantifying information

leakage and providing guarantees.
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To this end, we consider a two-way interactive data sharing setting with two

agents. Each agent generates an n-length independent and identically distributed

(i.i.d.) sequence of public and private data; data at the two agents are assumed to be

correlated as is generally the case in such distributed settings. Each agent wishes to

share a function of its public data with the other agent to satisfy a desired measure of

utility (e.g., via a distortion function) while ensuring that a mutual information based

leakage of its private data is constrained over K rounds of communications. This

problem model lends itself naturally to a rate-distortion based formulation. However,

the problem at hand does not involve a rate constraint, and therefore does not require

encoders and decoders; on the other hand, hiding private features from correlated

public features in an interactive setting require a collection of random mappings, one

for each round.

Formally, an information-theoretic privacy mechanism is a randomizing function

that maps the public data from a data source to an output (revealed/released data);

any such mapping will achieve a certain utility, quantified via a desired distortion

function, and leakage of private data quantified via average mutual information. In

the interactive setting, we allow for a total of K rounds of data sharing (K/2 rounds

per agent) and introduce a private interactive mechanism as a collection of K random

mappings. From both a theoretical and an application viewpoint, it is of much in-

terest to understand whether interaction reduces privacy leakage or if a single round

of data sharing su�ces for a fixed privacy budget (leakage constraint). Furthermore,

in contrast to the traditional interactive source coding setup, here the leakage and

distortion constraints are on di↵erent aspects of the source, namely, the private and

public features, respectively. Thus, it is unclear a priori if multiple rounds of inter-

action reduce leakage or worsen it.

Our Contributions : In this paper, we consider discrete memoryless correlated
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sources at the two agents and determine the set of all possible leakage-distortion tuples

achievable at both agents over K rounds of interaction (Section 2). In addition to

providing examples of sources for which interaction reduces leakage (Section 2.2), we

focus on a specific class of distortion functions, namely, log-loss distortion (Section 3).

Our motivation for this model stems from the fact that the soft decoding characteristic

of many iterative systems is well captured by log-loss distortion. We show that the

resulting problem is a dual of an interactive information bottleneck problem, and

analogously, involves optimization over a non-convex probability space; to this end,

we introduce a generalization of the agglomerative information bottleneck algorithm

for the two-agent interactive case (Section 3.1) and illustrate the value of interaction

in reducing leakage. Finally for Gaussian sources with both mean-squared and log-loss

distortion, we prove the optimality of one-shot data sharing (Sections 3 and 3.1).

Related Work : An information-theoretic formulation of the utility-privacy trade-

o↵ problem was introduced in [2] for the one-shot data publishing setting and has also

been studied in [3, 4]. For the interactive setting, [5] determines the largest achiev-

able utility-privacy tradeo↵ region for a two-agent system with a class of correlated

Gaussian sources and mean-squared distortion functions at both agents. In contrast,

the focus in this paper is on general source distributions and distortions.

For a one-way non-interactive setting, in [6] Makhdoumi et al. introduce an algo-

rithm based on the agglomerative information bottleneck algorithm to compute the

risk-distortion tradeo↵ for logarithmic loss based privacy and distortion functions.

More recently, in [7] Vera et al. study the rate-relevance region for an interactive

two-agent information bottleneck problem. In contrast to the information bottleneck

problem in which the goal is to minimize the compression rate of one feature (con-

sidered public in our model) while ensuring the output guarantees a lower bound on

the (mutual) information of a correlated feature (considered private in our model),

3



under log-loss distortion, the problem we solve is a dual problem of minimizing infor-

mation leakage of the hidden feature while lower bounding the (mutual) information

of the public feature (log-loss distortion constraint); for this problem, we develop an

algorithmic solution and highlight the advantages of multiple rounds of data sharing

to reduce leakage.

It is worth noting that the problem at hand also falls under the purview of secure

multiparty computation (SMC); in this context, recently, in [8] Kairouz et al. prove

the optimality of one-shot interactions in a SMC setting using di↵erentially private

data sharing. While SMC is a compelling formal framework for secure distributed data

sharing, we argue for alternate approaches due to both the complexity of practical

SMC implementations, if and when possible, as well as our focus on problems wherein

there is a need for data sharing without any central agent in a repeated fashion.

4



Chapter 2

SYSTEM MODEL AND INTERACTIVE MECHANISM

We consider two-way interactive model as shown in Fig. 2.1, where agents A and B

generate n-length i.i.d. sequences (Xn
1 , Y

n
1 ) and (Xn

2 , Y
n
2 ), respectively, with (X1i, Y1i,

X2i, Y2i)⇠ PX1,Y1,X2,Y2 , for all i = 1, 2, ..., n. The public data at both agents are

denoted by X
n
(·) and the correlated private data by Y

n
(·). Furthermore, we assume

that the private data is hidden and can only be leaked through the public data.

We consider a K-round interactive protocol in which, without loss of generality, we

X1, Y1 X2, Y2

PU1|X1

PU2|U1,X2

PUK |U1,...,UK�1,X2

.

.

.

AgentA AgentB

Figure 2.1: K-interactive Privacy Model.

assume that agent A initiates the interaction and K is even. A K-interactive privacy

mechanism is given by (n,K, {P1i}K/2
i=1 , {P2i}K/2

i=1 , D1, D2, L1, L2) as a collection of K

probabilistic mappings such that agent A shares data in the odd rounds beginning

with round 1 and agent B shares in the even rounds. A privacy mechanism P1i

for agent A used in the (2i � 1)-th round, i 2 {1, 2, . . . , K2 }, is a mapping from its

public data sequence and all prior sequences revealed from agent B. Thus, in round

1, P11 : X n
1 ! Un

1 , where Un
1 is the revealed set when a sequence Un

1 is shared via P11.

For the odd rounds i = 3, . . . , K � 1, the mechanism used by agent A is

P1, i+1
2

: (X n
1 ,Un

1 ,Un
2 , . . . ,Un

i�1) ! Un
i . (2.1)
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Similarly, agent B in even rounds i, i 2 {2, 4, . . . , K} uses its public data and the

prior data sequences revealed from agent A and maps them via a privacy mechanism

P2, i2
: (X n

2 ,Un
1 , . . . ,Un

i�1) ! Un
i . (2.2)

At the end of K rounds, agents A and B reconstruct sequences X̂
n
2 and X̂

n
1 ,

respectively, where X̂
n
1 = g2(Xn

2 , U
n
1 , . . . , U

n
K) and X̂

n
2 = g1(Xn

1 , U
n
1 , . . . , U

n
K), and g1

and g2 are appropriately chosen functions. The set of mechanism pair {P1j, P2j}
K
2
j=1

is chosen to satisfy

1

n

1X

i=1

E(d1(X1i, X̂1i))  D1 + ✏ (2.3a)

1

n

1X

i=1

E(d2(X2i, X̂2i))  D2 + ✏ (2.3b)

1

n
I(Y n

1 ;U
n
1 , . . . , U

n
K , X

n
2 )  L1 + ✏ (2.3c)

1

n
I(Y n

2 ;U
n
1 , . . . , U

n
K , X

n
1 )  L2 + ✏ (2.3d)

where d1(·, ·) and d2(·, ·) are the given distortion measures.

From the problem definition, it follows that Y1 $ X1 $ X̂1, Y2 $ X2 $ X̂2 form

Markov chains. The utility-privacy tradeo↵ region is the set of all (L1, D1, L2, D2)

tuples for which a privacy mechanism exists.

Theorem 1. For target distortion pair (D1, D2), and for a K-round interactive pri-

vacy mechanism the utility-privacy tradeo↵ region is given as:

{(L1, L2, D1, D2) : L1 � I(Y1;U1, . . . , UK , X2),

L2 � I(Y2;U1, . . . , UK , X1),

E(d1(X1, X̂1))  D1,

E(d2(X2, X̂2))  D2} (2.4)
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such that for all k, the following Markov chains hold:

Y1 $ (U1, . . . , U2k�1, X2) $ U2k (2.5)

Y2 $ (U1, . . . , U2k�2, X1) $ U2k�1 (2.6)

with |Ul|  |Xil |.(
Ql�1

j=1 |Uj|) + 1 where il = 1 if l is odd and il = 2 if l is even.

Proof. The proof details are in Appendix A. We briefly review the steps. The proof

involves two steps: the achievability part uses the method of types and typicality argu-

ments in bounding the achievable leakages; the converse on the other hand, considers

a mechanism that achieves (2.3a)-(2.3d) and exploits the i.i.d. nature of correlated

sources to obtain single letter bounds.

Corollary 1. For the special case, Yi = Xi, i = 1, 2, i.e., the public and private

data are the same, the leakage-distortion region in Theorem 1 is the same as the

rate-distortion region for the interactive source coding problem in[9].

Remark 1. Note that a one-shot setting is one in which both agents share data

independently and simultaneously with each other only once.

Without loss of generality we assume we initiate interaction from agent A such

that the last round of interaction is from agent B to agent A. We define a compact

subset of a finite Euclidean space as

PA
K :={PUK |X1,Y1,X2,Y2

: PUK |X1,Y1,X2,Y2
= PU1|X1PU2|U1,X2 . . . , PUK |UK�1,X2

,

E(d1(X1, X̂1))  D1, E(d1(X2, X̂2))  D2} (2.7)

In addition to the tradeo↵ region, one can also focus on the net leakage over K

rounds. From Theorem 1, the sum leakage-distortion function initiates from agent A

7



over K rounds is

L
A
sum,K(D1, D2) = min

PUK |X1,Y1,X2,Y2
2PA

K

{I(Y1;U1, . . . , UK , X2) + I(Y2;U1, . . . , UK , X1)}.

(2.8)

For the region given by Theorem 1, one can define a sum leakage over any k rounds,

k = 1, 2, . . . , K with target distortionsD1 andD2. Depending on which agent initiates

the interactions (assuming agent A), we have

L
A
sum,k(D1, D2) =

2X

i,j=1
i 6=j

I(Yi, Xj)

+ min
PUK |X1,Y1,X2,Y2

2PA
K

 
kX

i=1

I(Y1; Ui|X2, U
i�1) +

kX

i=1

I(Y2; Ui|X1, U
i�1)

!
.

(2.9)

One can similarly define LB
sum,k for sum leakage over k rounds originating from agent

B.

Lemma 1. For all k ( I) L
A
sum,(k�1) � L

A
sum,k. Similarly, L

B
sum,(k�1) � L

B
sum,k. ( II)

L
B
sum,(k�1) � L

A
sum,k. Similarly, L

A
sum,(k�1) � L

B
sum,k.

Proof. (I) For all k, LA
sum,(k�1) � L

A
sum,k, since any (k � 1)-round interactive mecha-

nism with initial at agent A can be considered as special case of k-round interactive

mechanism with initial at agent A and PUk|.,.,. = 0. (II) For all k, LB
sum,(k�1) � L

A
sum,k,

since any (k�1)-round interactive mechanism initial at A can be considered as special

case of k-round interactive mechanism with initial at B with PU1|X1 = 0.

Definition 1. Lsum,1 := limk!1 L
A
sum,k = limk!1 L

B
sum,k.

From (II) Lemma 1, limk!1 L
A
sum,k = limk!1 L

B
sum,k. From (I) Lemma 1, LA

sum,k,

L
B
sum,k are non-increasing in k and bounded from below, so limit exists. Thus, Lsum,1

is well-defined.

8



Remark 2. Note that Theorem 1 holds even if agent B initiates the interaction;

however now U1 will be the output of agent B in round 1 and U2 will be the output of

agent A in round 2, and so on, such that the Markov conditions are appropriate in

Theorem 1.

2.1 When Does Interaction help?

A natural question to ask that follows the characterization of the k-round leakage-

distortion region is whether interaction actually reduces leakage relative to a one-

round setting. In this section, we introduce a test for checking when multiple rounds

of interaction help by first identifying the relationship between Lsum,1 and L
A
sum,K

and then using it to determine the conditions under which interaction reduce leakage.

Our approach is modeled along the lines of the method in [10] by Ma et al. in which

an interactive source coding problem is considered. However, since our source models

include a pair of public and private variables, we need to extend the methods in [10]

to the problem setting at hand. Specifically, we characterize Lsum,1 and compare it

with L
A
sum,k for any given k to determine the value of interaction.

The characterization of LA
sum,k in (2.8) does not give us any bounds on the rate of

convergence to Lsum,1 for a given distribution PX1,Y1,X2,Y2 . Note that for each finite

k, as k increases, the dimension of optimization problem in (2.8) explodes. In this

section, we tackle this problem di↵erently. Instead of determining the characterization

of Lsum,1 for a fixed joint distribution of PX1,Y1,X2,Y2 and taking a limit as t ! 1,

we characterize Lsum,1 for a family of distributions.

Without loss of generality, let agent A initiate a K-round interaction with agent

B such that the last round of interaction is from agent B to agent A. The goal is

to characterize the family of source distributions for which interaction helps. To this

end, we define a ”leakage reduction” function ⌘AK(PX1,Y1,X2,Y2 , D1, D2).

9



Definition 2. The leakage reduction function for a K-round interactive mechanism

initiated at agent A is defined as

⌘
A
K(PX1,Y1,X2,Y2 , D1, D2) := H(Y1) +H(Y2) � L

A
sum,K(D1, D2)

= max
P (uK |x1,y1,x2,y2)2PA

K

[H(Y1|UK
, X2) +H(Y2|UK

, X1)] (2.10)

Note that ⌘AK(PX1,Y1,X2,Y2 , D1, D2) depends on PX1,Y1,X2,Y2 only through PX1,Y1|X2

and PX1,Y1|X2 . Evaluating ⌘
A
K is equivalent to evaluating L

A
sum,K . Definition 2 enables

us to characterize the properties of ⌘1 = limK!1 ⌘
A
K which then gives us LA

sum,1 =

H(Y1)+H(Y2)�⌘1. The goal is to determine source distributions for which ⌘1  ⌘0

where ⌘0 is the leakage reduction the absence of interaction. When K = 0, we have

L
A
sum,0 = L

B
sum,0 = Lsum,0 = I(Y1;X2) + I(Y2;X1) and consequently, ⌘0 = H(Y1|X2) +

H(Y2|X1).

Generally, ⌘AK and L
A
sum,K are functionals of PX1,Y1,X2,Y2 , D1, and, D2. For a given

source, since it is generally not possible to precisely determine the rate of convergence

of LA
sum,k to Lsum,1, we focus, as in [10], on determining the set of source distributions

for which Lsum,1 is strictly decreasing. This leads us to define the set of structured

neighborhoods of PX1,Y1,X2,Y2 which is the collection of all joint distribution P
0
X1,Y1,X2,Y2

which have the same marginal PX2,Y2|X1 as follows.

Definition 3. The marginal perturbation set PX2,Y2|X1 for a given joint distribution

PX1,Y1,X2,Y2 is defined as

PX2,Y2|X1
(PX1,Y1,X2,Y2) ={P

0
X1,Y1,X2,Y2

: P
0
X1,Y1,X2,Y2

<< PX1,Y1,X2,Y2 , P
0
X2,Y2|X1

= PX2,Y2|X1
}

(2.11)

where ” << ” is majorizing operator. This set is an ordered set with respect to

majorization. One can similarly define PX1,Y1|X2(PX1,Y1,X2,Y2).

Remark 3. Note that PX2,Y2|X1(PX1,Y1,X2,Y2) and PX1,Y1|X2(PX1,Y1,X2,Y2) are nonempty

10



sets as they contain PX1,Y1,X2,Y2. Furthermore, for all PX1,Y1,X2,Y2, PX2,Y2|X1(PX1,Y1,X2,Y2)

and PX1,Y1|X2(PX1,Y1,X2,Y2) are convex sets of PX1,Y1,X2,Y2.

We now develop characterization of ⌘1 for all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 defined as

follows which is closed with respect to marginal perturbation.

Definition 4. A family of joint distributions PX1,Y1,X2,Y2 is marginal-perturbation-

closed if for all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2, PX2,Y2|X1 [ PX1,Y1|X2 ✓ PX1,Y1,X2,Y2.

To characterize ⌘1, we define the following family of functionals.

Definition 5. ⌘0-majorizing family of functionals FD(PX1,Y1,X2,Y2) is the set of all

functionals ⌘ : PX1,Y1,X2,Y2 ⇥ D2 ! R satisfying

1. For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and (D1, D2) 2 D2
, ⌘(PX1,Y1,X2,Y2 , D1, D2) �

⌘0(PX1,Y1,X2,Y2 , D1, D2).

2. For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2, ⌘ is concave on PX2,Y2|X1.

3. For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2, ⌘ is concave on PX1,Y1|X2.

To characterize the properties of ⌘1 we need to establish the relationship be-

tween (k�1)-round interactive mechanism and k-round interactive mechanism. Intu-

itively speaking, to construct a k-round interactive mechanism, we first pick U1, then

for each realization of U1 = u1 constructing the remaining by considering (k � 1)-

round initiated at agent B but with di↵erent data distribution PX1,Y1,Y1,Y2|U1=u1 2

PX2,Y2|X1(PX1,Y1,X2,Y2). Distortion vector (D0
1, D2)u1 for each realization U1 = u1 in

(k � 1)-round interactive subproblem could be di↵erent from the original distortion

vector (D1, D2). The only condition needs to be satisfied is
P

u1
(D0

1, D2)u1PU1(u1) =

(D1, D2). The following lemma will be used in determining the ⌘1.

11



Lemma 2. 1. For all k 2 Z+
and PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 we have

⌘
A
k (PX1,Y1,X2,Y2 , D1, D2) =

max
P (U1|X1)

8
><

>:
max

8u12U1,(D0
1,D2)u12D

2

(D0
1,D2)u1 :E((D0

1,D2)u1 )(D1,D2)

{
X

u12U1

g(u1)}

9
>=

>;
. (2.12)

where g(u1) = PU1(u1)⌘Bk�1(P (X1, Y1, X2, Y2|u1), (D0
1, D2)u1).

2. For all k 2 Z+
and all (qX1,Y1,X2,Y2 , D1, D2) 2 PX1,Y1,X2,Y2 ⇥ D2

, ⌘
A
k is concave

on PX2,Y2|X1 ⇥ D2
.

3. For all k 2 Z+
and all (qX1,Y1,X2,Y2 , D1, D2) 2 PX1,Y1,X2,Y2⇥D2

, if ⌘ : PX1,Y1,X2,Y2⇥

D2 ! R is concave on PX2,Y2|X1 ⇥ D2
and if for all (PX1,Y1,X2,Y2 , D1, D2) 2

PX2,Y2|X1(qX1,Y1,X2,Y2)⇥D2
,⌘Bk�1(PX1,Y1,X2,Y2 , D1, D2)  ⌘(PX1,Y1,X2,Y2 , D1, D2), then

for all (PX1,Y1,X2,Y2 , D1, D2) 2 PX2,Y2|X1
(qX1,Y1,X2,Y2)⇥D2, ⌘

A
k (PX1,Y1,X2,Y2 , D1, D2) 

⌘(PX1,Y1,X2,Y2 , D1, D2).

Proof. The proof is based on Lemma 1 in [10] and we provide a sketch below.

1. For all k 2 Z+ and PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2

⌘
A
K(PX1,Y1,X2,Y2 , D1, D2)

= max
PUK |X1,Y1,X2,Y2

2PA
K

[H(Y1|UK
, X2) + H(Y2|UK

, X1)]

= max
PU1|X1

8
>>><

>>>:
max

P
UK
2 |X1,Y1,X2,Y2,U1

:

PU1|X1
P
UK
2 |X1,Y1,X2,Y2,U1

2PA
K

[H(Y1|UK
, X2) + H(Y2|UK

, X1)]

9
>>>=

>>>;

= max
PU1|X1

(
max

8u12U1,(D0
1,D2)u12D

2

(D0
1,D2)u1 :E((D0

1,D2)u1 )(D1,D2)

(
X

u1

PU1(u1)

(
max

P
UK
2 |X1,Y1,X2,Y2,U1

:

PU1|X1
P
UK
2 |X1,Y1,X2,Y2,U1

2PA
K
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[H(Y1|UK
2 , X2, U1 = u1) + H(Y2|UK

2 , X1, U1 = u1)]

)))

= max
P (U1|X1)

(

max
8u12U1,(D0

1,D2)u12D
2

(D0
1,D2)u1 :E((D0

1,D2)u1 )(D1,D2)

(
X

u12U1

P (u1)⌘
B
k�1(P (X1, Y1, X2, Y2|u1), (D

0
1, D2)u1)

))

(2.13)

2. For all k 2 Z+ and all (qX1,Y1,X2,Y2 , D1, D2) 2 PX1,Y1,X2,Y2 ⇥ D2, consider two

arbitrary distributions P
1
X1,Y1,X2,Y2

, P
2
X1,Y1,X2,Y2

2 PX2,Y2|X1 and distortion vec-

tors D
1 = (D1

1, D
1
2), D

2 = (D2
1, D

2
2) 2 D2. For every � 2 (0, 1), define

P
3
X1,Y1,X2,Y2

= �P
1
X1,Y1,X2,Y2

+ �̄P
2
X1,Y1,X2,Y2

and D
3 = �D

1 + �̄D
2. We show that

⌘
A
k (P

3
X1,Y1,X2,Y2

, D
3) � �⌘

A
k (P

1
X1,Y1,X2,Y2

, D
1) + �̄⌘

A
k (P

2
X1,Y1,X2,Y2

, D
2). Define an

auxiliary random variable V 2 U1 ⇥ {1, 2} such that PV (u1, 2) = �̄PU2
1
(u1) and

PV (u1, 1) = �PU1
1
(u1) where PU1

1
, PU2

1
are distributions that maximize (2.10)

for distributions P
1
X1,Y1,X2,Y2

, P
2
X1,Y1,X2,Y2

, respectively. According to part 1 of

lemma, we have

�⌘
A
k (P

1
X1,Y1,X2,Y2

, D
1) + �̄⌘

A
k (P

2
X1,Y1,X2,Y2

, D
2)

= �

X

u1

PU1
1
(u1)⌘

B
k�1(P

1
X1,Y1,X2,Y2|u1

, (D1
1, D

1
2)u1))

+ �̄

X

u1

PU2
1
(u1)⌘

B
k�1(P

2
X1,Y1,X2,Y2|u1

, (D2
1, D

2
2)u1))

=
X

V,
i=1,2

PV (u1, i)⌘
B
k�1(P

i
X1,Y1,X2,Y2|u1

, (Di
1, D

i
2)u1))  ⌘

A
k (P

3
X1,Y1,X2,Y2

, D
3). (2.14)

3. Part 3 follows directly from part 1.

Remark 4. By reversing the roles of agent A and B in Lemma 2, one can prove the

same lemma for agent B.
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Theorem 2. ⌘1(PX1,Y1,X2,Y2 , D1, D2) 2 FD(PX1,Y1,X2,Y2) and ⌘1 is the least element

of the set FD(PX1,Y1,X2,Y2).

Proof. We show that ⌘1 satisfies all three conditions in Definition 5 as follows:

1. Condition 1 in Definition 5 is satisfied since Lsum,1  Lsum,0, due to part (I)

Lemma 1.

2. Condition 2 in Definition 5 is satisfied due to part 2 in Lemma 2.

3. Condition 3 in Definition 5 is satisfied due to Remark 4.

We now prove that ⌘1 is the smallest element of FD(PX1,Y1,X2,Y2): we need to show

8⌘ 2 FD(PX1,Y1,X2,Y2) ⇥ D2, 8PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 , and, 8k, ⌘Ak (PX1,Y1,X2,Y2) 

⌘(PX1,Y1,X2,Y2) and ⌘
B
k (PX1,Y1,X2,Y2)  ⌘(PX1,Y1,X2,Y2). By using induction on k, part 3

of Lemma 2, and, Remark 4 we can show that ⌘1 is the least element of FD(PX1,Y1,X2,Y2).

Note that due to Lemma 2 and Remark 4, ⌘Ak always satisfies conditions 1 and

2 in Definition 5, but not necessarily condition 3. By Theorem 3, ⌘1 satisfies all

the conditions in Definition 5. Once ⌘AK satisfies condition 3 in Definition 5, then

interaction is not required, in other words, if all three conditions in Definition 5 are

not satisfied, it is beneficial to increase the number of rounds. We now summarize

this in the following theorem.

Theorem 3. The following equivalent conditions establish when interaction does not

help.

1. For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and D = (D1, D2) 2 D2
, ⌘

A
k (PX1,Y1,X2,Y2 , D) =

⌘1(PX1,Y1,X2,Y2 , D).

14



2. For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and D = (D1, D2) 2 D2
, ⌘

A
k (PX1,Y1,X2,Y2 , D) =

⌘
B
k+1(PX1,Y1,X2,Y2 , D).

3. For all PX1,Y1,X2,Y2 2 PX1,Y1,X2,Y2 and D = (D1, D2) 2 D2
, ⌘

A
k is concave on

PX1,Y1|X2(PX1,Y1,X2,Y2) ⇥ D2
.

Proof. Condition 1 implies condition 2 since ⌘Ak  ⌘
B
k+1  ⌘1. This inequality holds

due to (II) Lemma 1. Condition 2 implies condition 3 due to Remark 4. Condition 3

implies condition 1can be shown by using part 2 in Lemma 2 in addition to the fact

that ⌘Ak � ⌘0, which leads to ⌘Ak 2 FD(PX1,Y1,X2,Y2). According to Theorem 2, since

⌘1 is the least element of FD(PX1,Y1,X2,Y2) we have ⌘
A
k � ⌘1. Therefore, ⌘Ak = ⌘1.

2.2 Interaction Reduces Leakage: Illustration

A natural question in the interactive setting is to understand whether multiple

rounds can reduce leakage of the private variables while achieving the desired distor-

tion. In general, it is unclear whether interaction would reduce leakage relative to a

one-shot setting. We now present an example where interaction helps.

We observe that our example is similar to the one in [11] wherein Ma et. al.

consider an interactive source coding problem for sources (X1, X2) at the two agents,

i.e., without private data (Y1, Y2) and with constraints on coding rate in place of

leakage. However, it is not clear the optimal mechanisms for the rate-distortion

problem hold when minimizing leakage of (Y1, Y2). In fact, one needs to evaluate the

optimal mechanism for the problem at hand in each round due to the presence of

private side information at each agent and the leakage function being minimized; we

detail these computations below.

We consider binary random variables X1, X2, Y1, Y2 such that (X1, X2) is modeled

as doubly symmetric binary source with parameter p, i.e., (X1, X2) ⇠ DSBS(p), with

15



PX1,X2(0, 0) = PX1,X2(1, 1) =
1�p
2 and PX1,X2(1, 0) = PX1,X2(0, 1) =

p
2 . Furthermore,

(X1, Y1) and (X2, Y2) are correlated as follows: Y1 = X1 �Z1 and Y2 = X2 �Z2 where

Zi ⇠ Ber(p) for i = 1, 2, and Z1 and Z2 are independent of X1 and X2, respectively.

We let dA = 0 and consider an erasure distortion measure dB(·, ·) as:

dB(x1, x̂1) =

8
>>>>>><

>>>>>>:

0, if x̂1 = x1

1, if x̂1 = e

1, if x̂1 = 1 � x1.

(2.15)

One-round sum leakage L
A
sum,1: We first compute sum leakage LA

sum,1 for a one round

interaction starting from agent A. Note that in this case even though B does not

share data, by definition, the sum leakage L
A
sum,1 includes the leakage of Y2 at A. In

the Appendix, we prove that the leakage-distortion function is

L
A
sum,1(0, D2) =2 � [(1 � D2)H(p) + (1 +D2)H(2p(1 � p))]. (2.16)

For the classical source coding problem with the same distribution defined above

for (X1, X2) and functional dB(·, ·) in (2.15), the optimal PU1|X1 minimizing the

Wyner-Ziv rate-distortion function I(X1;U1|X2) is well known[12]. However, it is

not clear a priori that the same transition probability distribution will also minimize

the leakage I(Y1;U1|X2) in the presence of private features at both agents. In the Ap-

pendix, we prove that I(Y1;U1, X2) is indeed minimized by the same distribution that

minimizes I(X1;U1|X2) and achieves the Wyner-Ziv rate-distortion function (without

Y
n
i for i = 1, 2). This is also a result of independent interest.

Two-round sum leakage L
B
sum,2: We now compute the sum leakage L

B
sum,2 for a

two-round interaction starting from agent B in round 1 and returning from A to

B in round 2. Let U
n
1 denote the output of the mapping in round 1 from B to A

and U
n
2 denotes the output of mapping in round 2 from A to B. We will explicitly

16



construct a mechanism pair (PU1|X2 , PU2|X1,U1) and X̂1 which leads to an admissible

tuple (L1, L2, D). Let PU1|X2 be binary symmetric channel with crossover probability

↵, i.e., P (U1|X2) = BSC(↵). We choose the conditional pmf PU2|X1,U1(u2|x1, u1) as

given in Table 2.1 and let X̂1 = U2.

Table 2.1: Conditional Distribution PU2|X1,U1

PU2|X1,U1 u2 = 0 u2 = e u2 = 1

x1 = 0, u1 = 0 1 � � � 0

x1 = 1, u1 = 0 0 1 0

x1 = 0, u1 = 1 0 1 0

x1 = 1, u1 = 1 0 � 1 � �

For a given value for the DSBS parameter, p, there are several values of (↵, �)

pair such that LB
sum,2  L

A
sum,1. For example, for p = 0.03, ↵ = 0.35, and � = 0.55,

L
B
sum,2(0, D2) is

I(Y2;U1, X1) + I(Y1;U2|U1, X2) = 1.1876 (2.17)

and the corresponding distortion is D2 = E(d(X1, X̂1)) = 0.8116. By computing

L
A
sum,1 and comparing it with (14) for the same distortion, we have LA

sum,1(0, 0.8116) =

1.3832. Thus, interaction reduces leakage.

In [11], using the same PU1|X2 , PU2|X1,U1(u2|x1, u1) and X̂1 as described above,

Ma et. al. show that interaction reduces the sum-rate over two rounds relative to

one round for specific values of p, ↵, and �. However, as discussed earlier, it wasn’t

clear whether the same parameters in [11] also reduce leakage of correlated hidden

variables (Y1, Y2) in our problem. We have verified that for di↵erent value of ↵ and

� including those in [11], the two-round sum leakage is smaller than the one-round

leakage. Furthermore, our result determines the optimal mapping for the case with

Y1 $ X1 $ U and side information X2 at agent 2 is also of independent interest.
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2.3 Gaussian Sources: Interactive Mechanism

We now consider the case where the data pairs at each agent are drawn accord-

ing to bivariate Gaussian distributions, i.e., (X1, Y1) ⇠ N(0,⌃X1,Y1), (X2, Y2) ⇠

N(0,⌃X2,Y2), and (X1, X2) ⇠ N(0,⌃X1,X2). For jointly Gaussian sources subject

to mean square error distortion constraints, we prove that one round of interaction

su�ces to achieve the utility-privacy tradeo↵.

Theorem 4. For the private interactive mechanism, the leakage-distortion region

under mean square error distortion constraints consist of all tuples (L1, L2, D1, D2)

satisfying

L1 � 1

2
log(

�
2
Y1

↵2D1 + �
2
Y1|X1,X2

) (2.18)

L2 � 1

2
log(

�
2
Y2

�2D2 + �
2
Y2|X1,X2

) (2.19)

where ↵ = cov(X1,Y1)
�2
Y1

and � = cov(X2,Y2)
�2
Y2

.

Proof. If (X1, Y1) is jointly Gaussian, we can write Y1 = ↵X1+Z1, where Z1 is a zero

mean Gaussian random variable independent of X1.

Achievability is established by considering Gaussian mechanism in each round,

i.e., the sequence U
n
1 is chosen such that the ‘test channel’ from U1 to X1 yields

U1 = X1 + V1, where V1 is Gaussian and independent of the rest of random vari-

ables, with variance Q such that reconstruction function of X̂1 to be the MMSE

estimate of X1 given U1 and X2. For such a system, the minimum mean square

error (MMSE) estimator minimizes the quadratic distortion measure. Therefore

D1 = E(V ar(X1|U1, X2)) (no interaction is required).
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To prove the converse, we have

L1 + ✏ � 1

n
I(Y n

1 ;U
n
1 , . . . , U

n
K , X

n
2 ) (2.20)

=
1

n
[h(Y n

1 ) � h(Y n
1 |Un

1 , . . . , U
n
K , X

n
2 )] (2.21)

=
1

n
[nh(Y1) �

nX

i=1

h(Y1i|Un
1 , . . . , U

n
K , X

n
2 , Y

i�1
1 )] (2.22)

�h(Y1) � 1

n

nX

i=1

h(Y1i|Un
1 , . . . , U

n
K , X

n
2 ) (2.23)

�h(Y1) � 1

n

nX

i=1

1

2
log(2⇡e(V ar(Y1i|Un

1 , . . . , U
n
K , X

n
2 ))) (2.24)

�h(Y1) � 1

2
log(2⇡e

1

n

nX

i=1

(V ar(Y1i|Un
1 , . . . , U

n
K , X

n
2 ))) (2.25)

�h(Y1) � 1

2
log(2⇡e

1

n

nX

i=1

(V ar(↵X1i + Z1i|Un
1 , . . . , U

n
K , X

n
2 ))) (2.26)

�1

2
log(

�
2
Y1

↵2D1 + �
2
Y1|X1,X2

) (2.27)

Similarly, we can prove L2 � 1
2 log(

�2
Y2

�2D2+�2
Y2|X1,X2

).

One can notice in the case that Y1 $ X1 $ X2 $ Y2 forms Markov chain we

have V ar(Y1|X1, X2) = V ar(Y1|X1).
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Chapter 3

PRIVATE INTERACTIVE MECHANISMS UNDER LOG-LOSS DISTORTION

Logarithmic loss is a widely used penalty function in machine learning theory and

prediction and it is a natural loss criterion in scenarios where reconstructions are

allowed to be soft, i.e., they can be probability measures instead of deterministic

decision values. We now derive the leakage-distortion region under log-loss distortion.

Formally, for a random variable X 2 X and its reproduction alphabet X̂ as the

set of probability measures on X , the log-loss distortion is defined as

d(x, x̂) = log(
1

x̂(x)
). (3.1)

3.0.1 Leakage-distortion region for log-loss distortion

Theorem 5. For the K-round interaction mechanism the leakage-distortion region

under log-loss distortion, set of all tuples (L1, D1, L2, D2) is given by:

{(L1, L2, D1, D2) : L1 � I(Y1;U1, . . . , UK , X2),

L2 � I(Y2;U1, . . . , UK , X1),

D1 � H(X1|U1, . . . , UK , X2)

D2 � H(X2|U1, . . . , UK , X1)}. (3.2)

Proof. The distortion bounds in (3.2) result from applying X̂i = P (Xi = xi|U1, . . . , UK , Xj)
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i = 1, 2, j 6= i, in Theorem 1, to get

Di � E(d(Xi, X̂i))

=
X

xi,u1,...,uK

P (xi, u1, . . . , uK) log(
1

P (xi|u1, . . . , uK , xj)
) = H(Xi|U1, . . . , UK , Xj),

(3.3)

where the summation is over (xi, u1, . . . , uK) since X̂ is a function of (U1, . . . , UK).

Corollary 1. For special case, Yi = Xi, i = 1, 2, we have L1(D1, D2) = H(Y1) � D1

and L2(D1, D2) = H(Y2) � D2, i.e., the leakage for each agent is simply the rate-

distortion function under log-loss distortion.

For the case Yi = Xi, i = 1, 2, as explained earlier, the leakage-distortion region

is the same as the rate-distortion region. In [13], it is shown that a one-shot scheme

achieves the rate-distortion region. In fact, the optimal mapping is a one-shot Wyner-

Ziv scheme that each agent uses to share data simultaneously and independently with

the other agent.

Corollary 2. For X2 = Y2 = ;, under log-loss distortion measure and K = 1, i.e., a

a one-way (one round) single source agent and single receiver agent setting with no

interaction (see Fig. 3.1) the bounds in Theorem 5 yields the following optimization

problem.

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

Figure 3.1: One-way non-interactive mechanism.

min
P (U |X):I(X;U)�⌧

I(Y ;U). (3.4)
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In general, when Yi 6= Xi, i = 1, 2, a one-shot scheme will not achieve the set

of all (L1, D1, L2, D2) tuples in Theorem 5. It is then of interest to understand if

interaction reduces leakage, and if so, what the optimal set of mechanisms are. To

this end, we begin by rewriting the distortion bounds in (3.2) as

I(X1;U1, . . . , UK , X2) � ⌧1 (3.5)

I(X2;U1, . . . , UK , X1) � ⌧2.

From (3.2), computing the K-round sum leakage leads to following optimization

problem:

min
{P1k,P2k}

K/2
k=1

2X

i,j=1,i 6=j

I(Yi;U1,..., UK , Xj) (3.6)

such that for all i, j = 1, 2, i 6= j,

I(Xi;U1, ...UK , Xj) � ⌧i. (3.7)

The optimization problem (3.6) is not convex because of the non-convexity of

the feasible region in (3.7). One can, however, draw parallels between the above

optimization problem and the information bottleneck (IB) problem that Tishby et al.

introduce in [14] in which for a source (X, Y ) and an output U such that Y $ X $ U

form a Markov source, the goal is to minimize the information shared about X via U

while preserving a measure of information about the correlated feature Y via U . One

can see immediately that the IB problem is a dual of the privacy problem considered

here in that the features to be revealed and hidden are swapped. Noting that the

IB optimization problem is non-convex, the authors in [15] present an agglomerative

information bottleneck algorithm that is guaranteed to converge to a local minima.

Recently, in [6], Makhdoumi et al. also observe parallels between the information

bottleneck problem and the single-round version of the problem considered here; i.e.,

for the case of a one-way non-interactive single source agent and a single receiver
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agent setup (with no side information at the receiver agent) shown in Fig. 3.1 and

the associated “privacy funnel” optimization problem in (3.4). Furthermore, they

apply Slonim’s algorithm to their “privacy funnel” setup to compute a locally optimal

mechanism. The optimization we study in (3.6) is an interactive version of (3.4), and

thus, requires generalizing the methods and approaches for the non-interactive case

to the interactive setup. In the following subsection we present an interactive version

of the agglomerative IB algorithm and show how the presence of side-information in

each round can be exploited to generalize the algorithm.

3.0.2 Information Bottleneck Problem and Agglomerative Information Bottleneck

Algorithm

Consider the setting in Fig. 3.1 with X2 = ; and Y2 = ;. The information

bottleneck problem seeks to minimize the compression rate between X and U , while

preserving a measure of the average information between U and some correlated data

Y and is given by

min
P (U |X):I(Y ;U)�⌧

I(X;U). (3.8)

In [14], Tishby et al. showed that it is possible to characterize the general form of

the locally optimal solution for the information bottleneck problem in (3.8). Tishby et

al. also introduced an iterative algorithm that determines a locally optimal solution.

A natural question to is whether one can extend the iterative algorithm to sum-leakage

problem introduced in (3.6). An immediate obstacle is the fact the feasible region

is not convex and distortion measures are not linear function of distributions. In

spite of these drawbacks, in the following theorem we characterize the locally optimal

solution of problem in (3.6). Note that one can also introduce an iterative algorithm

to construct a locally optimal solution of (3.6) based on the following theorem.
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Theorem 6. Suppose that we are given condition in Theorem 1. The conditional

distribution PUj |Uj�1,X1
(uj|uj�1

, x1) for all j for Lagrange-multipliers �1 and �2 is the

stationary point of Lagrangian

L = I(Y1;U
K
, X2) + I(Y2;U

K
, X1) � �1I(X1;U

K
, X2) � �2I(X2;U

K
, X1) (3.9)

if and only if

P (uj|uj�1
, x1) =

P (uj)

Z(x1, x2, u
j�1, �1, �2)

(3.10)

exp

(
� �

�1
1 [EX2|X1,uj�1{D(P (y1|x1, x2, u

j�1)||P (y1|uj
, x2))}

+D(P (y2|x1, u
j�1)||P (y2|x1, u

j))] � D(P (x2|x1, u
j�1)||P (x2|uj))

)

(3.11)

for some �1 and �2, where Z(x1, x2, u
j�1

, �1, �2) is a normalization function.

Proof. The proof details can be found in Appendix C.

Consider the mechanism depicted in Fig. 3.1. In this problem X2 = ; and Y2 = ;.

The optimal solution for this problem is given by

P (u|x) = P (u)

Z(x, �)
exp{���1

D(P (y|x)||P (y|u)))} (3.12)

Several methods were developed to solve information bottleneck problem. How-

ever, for ease of computation and for cases in which a locally optimal solution may

su�ce, in [15], Slonim et al. propose an agglomerative algorithm which as the name

suggests involves reducing the cardinality of U iteratively until the constraints on

both X and Y are satisfied (since U acts as a quantized version of the feature to be

minimally revealed) and prove that it converges to a local minima of the optimization

problem. We adopt this algorithm and generalize it to the interactive setting.
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We first briefly outline the agglomerative information bottleneck algorithm which

yields a solution to (3.8). The procedure typically starts with the most fine-grained

solution where U = X , i.e., each value of X is assigned to a unique singleton cluster

in U . The idea is to reduce the cardinality of U and consequently reduce I(X;U), by

merging two values of ui 2 U and uj 2 U such that the new merged random variable

Uij is distributed as

P (uij|x) = P (ui|x) + P (uj|x) (3.13)

In the k-th iteration, the indices i and j are chosen that Uk
ij satisfies the constraint

in (3.8), while I(X;Uk
ij) is at most as large as I(X;Uk�1) where U

k�1 denotes the

random variable from the previous iteration.

In[6], the authors apply the agglomerative information bottleneck algorithm to

compute the locally optimal leakage for a desired ⌧ in (3.4). They refer to the opti-

mization problem in (3.4) as a privacy funnel problem and the resulting optimization

algorithm as greedy algorithm privacy funnel.

As observed in [6], we note that the optimization problem in (3.6) as well as (3.4)

di↵ers from the information bottleneck problem in (3.8) in that the minimization and

constraint functions are swapped for the same minimizing argument.

3.0.3 Agglomerative Interactive Privacy Algorithm

The optimization problem in (3.6) is an interactive generalization of the privacy

funnel problem in (3.4) in which both agents have access to data sources that need

to be shared. We now show that the multi-round interaction setup allows a natural

generalization of the single round case. To develop such an algorithm, we first consider

the single round case with side information at the receiver agent (depicted in Fig.

3.2). We introduce a merge-and-search algorithm that extends the agglomerative
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information bottleneck algorithm described earlier to a multivariate setting.

Merge-and-Search algorithm: Consider a one-round setting, i.e., K = 1 with

side information at receiver agent (Fig. 3.2). Since I(Y ;Z) is fixed by joint source

distribution, the optimization problem in (3.6) can be simplified as

min
P (U |X)

I(Y ;U,Z) s.t. I(X;U,Z) � ⌧1 (3.14)

Comparing with (3.4), the optimization in (3.14) is obtained by replacing U by the

Source''
Agent'

Receiver'
Agent'

P (U |X){X, Y }

Z

Figure 3.2: Point to point mechanism with side information

tuple (U,Z) and P (U |X) by P (U,Z|X) = P (U |X)P (Z|X). Thus, in computing the

optimal mechanism, one now needs to consider the pair (U,Z). We iteratively reduce

the cardinality of U to reduce I(Y ;U,Z) by merging the values of U for each value

of Z such that distortion condition in (3.14) is satisfied, i.e., in the k-th interaction,

we choose indices i and j such that I(X;Uk
ij, Z) � ⌧1 where U

k
ij is the resulting from

merging ui and uj while maximizing I(Y ;Uk�1|Z) � I(Y ;Uk
ij|Z) where U

k�1 is the

output of the algorithm in round k � 1. These steps are the basis of our merge-and-

search algorithm that extends [6, Algorithm 1] to the more general point-to-point

setting with side information at receiving agent.

Consider the two-round setting in (3.6), i.e., K = 2. We can use the above

described merge-and-search algorithm iteratively to find the mechanism (P11, P21).

In the first round, we have a point-to-point setting with side information X2 for

which the distribution P (U1|X1) can be found, as detailed above. In the second

round, the cardinality of U2 is reduced to decrease I(Y2;U1, U2, X1) using P (U1, X1)

computed during the first round. This reduction is computed by merging elements of
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Algorithm 1: Agglomerative Iterative Algorithm

For k = 1, . . . , K/2

R(2k-1): min I(Y1;X2, U1, . . . , U2k�2, U2k�1)

over P (U2k�1|X2, U1, . . . , U2k�2)

s.t. I(X1;U2k1 |X2, U1, . . . , U2k�2) � ⌧2k�1

Input (2k-1): P (X1, Y1), P (U2k�2, . . . , U1, X1, X2), ⌧2k�1

Apply the merge-and-search algorithm to find local optimum.

Output (2k-1): P (U2k�1|X1, X2, U1, . . . , U2k�2)

R(2k): min I(Y2;X1, U1, . . . , U2k�1, U2k)

over P (U2k|X1, U1, . . . , U2k�1)

s.t. I(X2;U2k|X1, U1, . . . , U2k�1) � ⌧2k

Input (2k): P (X2, Y2), P (U2k�1, . . . , U1, X1, X2), ⌧2k

Apply the merge-and-search algorithm to find local optimum.

Output (2k): P (U2k|X1, X2, U1, . . . , U2k�1)

Output : P (U1|X1), . . . , P (UK |U1, . . . , UK�1, X2)

U2 conditioned on U1 and X1.

The steps we outlined above can be extended to find the locally optimal mechanism

{P1i, P2i}
K
2
i=1 for any K � 2 and is detailed in Algorithm 1.

3.0.4 Gaussian Sources Under Log-Loss Distortion

In this section, we prove for Gaussian sources under log-loss distortion one round

of interaction su�ces. We leverage the results by Tishby et.al for the non-interactive

case in [16] to prove that no interaction is required.
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Proposition 1. [ [16], Theorem 1] Let (X, Y ) be jointly Gaussian distributed. Let U

be the output of a mapping P (U |X) such that Y $ X $ U forms a Markov chain.

The mapping P (U |X) that minimizes the following information bottleneck problem

for jointly Gaussian sources

min
P (U |X)

I(X;U)

subject to I(Y ;U) � ⌧.

(3.15)

is Gaussian.

The above result extends in a straightforward manner to the non-interactive (one-

way) privacy funnel setting given by (3.4) and we summarize it in the following

corollary. The extension is a direct result of the fact that since X and Y are jointly

Gaussian, the optimal mapping remains Gaussian even when the objective and con-

straint functions are swapped in (3.4).

Corollary 1. For the non-interactive (one-way) single source and single receiver

agent setting in Fig. 3.1 with the leakage-distortion tradeo↵ problem given by (3.4),

the optimal leakage-minimizing mechanism is Gaussian.

As a first step towards establishing optimality of a one-round Gaussian mechanism

for the interactive setting, we extend the results in Proposition 1 to the case in which

the receiver agent, chosen as agent 2 without loss of generality in the non-interactive

setting, has side information Z correlated with source date (X, Y ).

Lemma 3. Suppose (X, Y ) and (X,Z) are jointly Gaussian and let P (U |X) be a

privacy mechanism such that U $ X $ Z forms a Markov chain (see Fig. 3.2).

The optimal mechanism P (U |X) minimizing I(Y ;U,Z) subject to I(X;U,Z) � ⌧ is

Gaussian.
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Proof. Define V = (U,Z). Now, consider the following optimization problem

min
P (V |X)

I(Y ;V )

subject to I(X;V ) � ⌧.

(3.16)

.

From Corollary 1, the optimizing mechanism P (V |X), and therefore, the output

V in (3.16) are Gaussian. Thus, since Z is Gaussian, we have that (U,Z) are jointly

Gaussian. Note that the mechanisms over which the optimizations are done in Lemma

3 and (3.16) are the same since P (V |X) = P (U,Z|X) = P (Z|X)P (U |X) for a given

source distribution P (X,Z).

We now use Lemma 3 to determine the optimal mechanism for the K-round

interactive mechanism with Gaussian sources and show that one round of interaction

su�ces.

Theorem 7. Consider a two-agent interactive setting with log-loss distortion and

jointly Gaussian sources. The optimal leakage-distortion tradeo↵ region in Theorem

5 can be achieved in one round of interaction.

Proof. From Lemma 3 we have that even with side information at the receiver agent,

the optimal mechanism is Gaussian. Since the interactive setting involves a set of K

such mechanisms, it is straightforward to see that the tuple (U1, . . . , UK) in Theorem

5 should also be Gaussian, i.e., one round of interaction su�ces.

3.0.5 Benefit of Interaction Under Log-Loss Distortion

In Theorem 5, we present the best achievable region under log-loss distortion.

We now address the problem of whether more rounds can strictly improve the sum

leakage-distortion function.
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In this section, we show that there exists at least one source for which multiple

rounds of interaction help under log-loss distortion. By using Theorem 3, we show

interaction under log-loss distortion reduces leakage.

Theorem 8. For a one-round interaction problem for a source (X, Y ) at source agent

with side information Z at receiver agent depicted in Fig. 3.2, there exists a joint

probability distribution PX,Y,Z and distortion level D for which L
A
sum,1(PX,Y,Z , D) >

L
B
sum,2(PX,Y,Z , D).

Proof. According to Theorem 3, it is su�cient to show there exist PX,Y |Z and distor-

tion level D for which ⌘A1 (PX,Y |ZPZ , D) is not a concave function with respect to PZ .

In particular, it is su�cient to show there exist PZ1 and PZ2 such that

⌘
A
1 (PX,Y |Z

PZ1 + PZ2

2
, D) <

⌘
A
1 (PX,Y |ZPZ1 , D) + ⌘

A
1 (PX,Y |ZPZ2 , D)

2
(3.17)

Consider X = Y = {0, 1}. Let PZ1 ⇠ Bern(q) andPZ2 ⇠ Bern(q̄) where q̄ = 1�q.

Let PX,Y |Z be the distribution in Table 3.1.

Table 3.1: Conditional Distribution PX,Y |Z

PX,Y |Z Z = 0 Z = 1

X = 0, Y = 0 p̄r̄ pr̄

X = 0, Y = 1 p̄r pr

X = 1, Y = 0 pr p̄r

X = 1, Y = 1 pr̄ p̄r̄

Let PZ =
PZ1+PZ2

2 which is Bern(12). The joint distribution (X,Z) is doubly

symmetric binary source with parameter p, (X,Z) ⇠ DSBS(p), and Y = X + N ,

N ⇠ Bern(r) (with X and N independent). Exactly solving the maximization prob-

lem in both right and left-side of equation (3.17) is cumbersome but it is easy to pro-

vide bounds for them. Define �(PX,Y,Z , PU |X) := H(Y |Z,U) and  (PX,Y,Z , PU |X) :=

H(X|U,Z).
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Lemma 4. If PZ1 ⇠ Bern(q) andPZ2 ⇠ Bern(q̄) and PX,Y |Z is conditional distribu-

tion given in Table 3.1, then

⌘
A
1 (PX,Y |ZPZ1 , D) + ⌘

A
1 (PX,Y |ZPZ2 , D)

2
� C(p, q, r,↵2,0,↵2,1) (3.18)

holds for

D = �(p, q, r,↵2,0,↵2,1) (3.19)

where

C(p, q, r,↵2,0,↵2,1) = �(PX,Y |ZPZ1 ,↵2,0,↵2,1) =(p̄q̄↵2,0 + p̄q↵2,1)H(
p̄r̄↵2,0 + pr↵2,1

p̄↵2,0 + p↵2,1
)

+(pq↵2,0 + p̄q↵2,1)H(
pr̄↵2,0 + p̄r↵2,1

p↵2,0 + p̄↵2,1
)

(3.20)

and

�(p, q, r,↵2,0,↵2,1) =  (PX,Y |ZPZ1 ,↵2,0,↵2,1) =q̄(p̄↵2,0 + p↵2,1)H(
p̄↵2,0

p̄↵2,0 + p↵2,1
)

q(p↵2,0 + p̄↵2,1)H(
p↵2,0

p↵2,0 + p̄↵2,1
)

(3.21)

where H(.) is binary entropy and distribution

P (U |X) =

2

66664

1 � ↵2,0 0

0 1 � ↵2,1

↵2,0 ↵2,1

3

77775

where 0  ↵2,0,↵2,1  1.

Proof. Note that ⌘A1 (PX,Y,Z1 , D) is given by

max
P (U |X)

H(Y |Z1, U)

subject to H(X|Z1, U)  D

(3.22)
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which is greater than or equal to the objective value of the solution of following

problem.

max
P (U |X)

H(Y |Z1, U)

subject to H(X|Z1, U)  D

P (U |X) =

2

66664

1 � ↵2,0 0

0 1 � ↵2,1

↵2,0 ↵2,1

3

77775
.

(3.23)

Now, by substituting distribution P (U |X) and computing �(PX,Y |ZPZ1 ,↵2,0,↵2,1), it

can be seen that (3.23) is greater than or equal to C(p, q, r,↵2,0,↵2,1). Consequently,

we have ⌘A1 (PX,Y |ZPZ1 , D) � C(p, q, r,↵2,0,↵2,1). Observe that C(p, q, r,↵2,0,↵2,1) =

C(p, q̄, r,↵2,0,↵2,1) and �(p, q, r,↵2,0,↵2,1) = �(p, q̄, r,↵2,0,↵2,1) hold. Therefore we

have

⌘
A
1 (PX,Y |ZPZ2 , D) �C(p, q̄, r,↵2,0,↵2,1)

=C(p, q, r,↵2,0,↵2,1)

(3.24)

it follows that

⌘
A
1 (PX,Y |ZPZ1 , D) + ⌘

A
1 (PX,Y |ZPZ2 , D)

2
�C(p, q, r,↵2,0,↵2,1) (3.25)

Left-side of (3.17) is given by

max
P (U |X)

H(Y |Z,U)

subject to H(X|Z,U)  D.

(3.26)
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Figure 3.3: Comparing Sum leakage for the two round vs the one round interactive
mechanism, where the blue curve with stars and the red curve with triangles show
the one-round and the two-round interaction mechanism, respectively.

Equation (3.26) is equivalent to

max
P (U |X)

H(X|Z,U) +H(Y |X,Z) � H(X|Y, Z, U)

subject to H(X|Z,U)  D.

(3.27)

Which is less than or equal to D +H(r). For all q 2 (0, 12) and all ↵2,0,↵2,1 2 (0, 1),

there exists an r such that D +H(r) is strictly less than C(p, q, r,↵2,0,↵2,1).

3.1 Illustration of results

We illustrate our results for the log-loss distortion measure, and in particular,

explore the e↵ect of interaction on leakage using a publicly available dataset. The

US Census dataset is a sample of US population from 1994. It contains di↵erent

features including age, ethnicity, income levels, work class, and, gender such that the

age feature is categorized into 7 levels, gender and income level (above 50K USD

and less than 50K USD) are binary random variables, Work class is categorized in 4

levels, and, ethnicity is classified into 4 levels. We choose X1 =(age, gender), X2 =
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(ethnicity, gender), Y1 =(work class), and, Y2 =(income level), thus wishing to keep

private work class and income level at agents 1 and 2, respectively.

In Fig. 3.3, using Algorithm 1 and the empirical distribution of the data, we

plot both the one-round and the two-round sum leakages as functions of mutual

information based on log-loss distortion level at agent B. To demonstrate the value

of interaction we consider the following results: let dA = 0 and dB be the log-loss

distortion measure. The blue curve with stars is the leakage for one round from A

to B. We note that it upper bounds the red curve with triangles which denotes the

sum leakage starting from B to A and back to B, thus suggesting the interaction can

reduce leakage for the log-loss setting.
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Chapter 4

CONCLUSION AND FUTURE WORK

We have defined a K-round interactive privacy mechanism between two agents

with correlated sources, and have determined the leakage-distortion region for gen-

eral distortion functions with particular focus on log-loss distortion. For both general

and log-loss distortion functions, we have illustrated that interaction can reduce leak-

age. In practice, this suggests that agents can share just su�cient data to achieve

distortion over multiple results relative to a one-shot non-interactive setting. Future

work includes evaluating leakage for di↵erent classes of statistical inference attacks

as well as extension to the multi-agent (K > 2) case.
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APPENDIX A

PROOF OF THEOREM 1

Proof. Achievability: we will show that following inequality holds.

lim
n!1

1

n
I(Y n

1 ;U
n
1 , . . . , U

n
K , X

n
2 )  I(Y1; U1, . . . , UK , X2) + ✏ (A.1)

I(Y n
1 ;U

n
1 , . . . , U

n
K , X

n
2 ) = H(Y n

1 ) � H(Y n
1 |Un

1 , . . . , U
n
K , X

n
2 ) (A.2)

= nH(Y1) � H(Y n
1 |Un

1 , . . . , U
n
K , X

n
2 ) (A.3)

= nH(Y1) �
X

u1,...,uK ,x2

P (u1, . . . , uK , x2)H(Y n
1 |u1, . . . , uK , x2) (A.4)

= nH(Y1) � [
X

u1,...,uK ,x22TU1,...,UK,X2

P (u1, . . . , uK , x2)H(Y n
1 |u1, . . . , uK , x2)

+
X

u1,...,uK ,x2 62TU1,...,UK,X2

P (u1, . . . , uK , x2)H(Y n
1 |u1, . . . , uK , x2)] (A.5)

= nH(Y1) � [
X

u1,...,uK ,x22TU1,...,UK,X2

P (u1, . . . , uK , x2){

�
X

y12TY1|u1,...,uK,x2

P (y1|u1, . . . , uK , x2) log(P (y1|u1, . . . , uK , x2))

�
X

y1 62TY1|u1,...,uK,x2

P (y1|u1, . . . , uK , x2) log(P (y1|u1, . . . , uK , x2))}]

�
X

u1,...,uK ,x2 62TU1,...,UK,X2

P (u1, . . . , uK , x2)H(Y n
1 |u1, . . . , uK , x2)] (A.6)

= nH(Y1) � nH(Y1|U1, . . . , UK , X2)

+
X

u1,...,uK ,x22TU1,...,UK,X2

P (u1, . . . , uK , x2){

�
X

y1 62TY1|u1,...,uK,x2

P (y1|u1, . . . , uK , x2) log(P (y1|u1, . . . , uK , x2))}] (A.7)

�
X

u1,...,uK ,x2 62TU1,...,UK,X2

P (u1, . . . , uK , x2)H(Y n
1 |u1, . . . , uK , x2)] (A.8)

 nI(Y1;U1, . . . , UK , X2) + n✏(n) (A.9)

Where TU1,...,UK ,X2 , TY1|u1,...,uK ,x2 are sets of jointly typical sequences and condi-
tional typical sequences, respectively, and (A.2) follows from definition of mutual
information, (A.4) is definition of conditional entropy and (A.6)-(A.8) follows from
this fact that the probability of being non-typical sequence goes to zero as n goes to
infinity. Note that ✏(n) goes to zero when n goes to infinity.
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Converse: To prove the converse, according to (2.3a)-(2.3d) we are given a mech-
anism, Un

1 , . . . , U
n
K . (2.3c) implies

L1 + ✏ � 1

n
I(Y n

1 ;U
n
1 . . . , U

n
K , X

n
2 ) (A.10)

=
1

n
[I(Y n

1 ;X
n
2 ) + I(Y n

1 ;U
n
1 . . . , U

n
K |Xn

2 )] (A.11)

=
1

n

nX

i=1

[I(Y n
1i ;X

n
2i)

+H(Y1i|X2i) � H(Y1i|Un
1 . . . , U

n
K , X

n
2 , Y

i�1
1 )] (A.12)

� 1

n

nX

i=1

[I(Y n
1i ;X

n
2i)

+H(Y1i|X2i) � H(Y1i|Un
1 . . . , U

n
K , X

n
2i)] (A.13)

=
1

n

nX

i=1

[I(Y n
1i ;X

n
2i) + I(Y1i;U

n
1 . . . , U

n
K |X2i)] (A.14)

=
1

n

nX

i=1

[I(Y n
1i ;X

n
2i) + I(Y1i;U1i . . . , UKi|X2i)] (A.15)

=
1

n

nX

i=1

I(Y1i;U1i . . . , UKi, X2i) (A.16)

where (A.10) follows from (2.3c), (A.11) is definition of mutual information, (A.12)
follows from chain rule and the fact that sources are i.i.d., (A.13) follows from this
fact that condition reduces entropy. Note that leakage-distortion function is non-
increasing and convex function of D[17].

We now show that following Markov chains holds

Y1i $ (U1i, . . . , U2k�1,i, X2i) $ U2k,i (A.17)

Y2i $ (U1i, . . . , U2k�2,i, X1i) $ U2k�1,i (A.18)

(A.17) holds because our sources are i.i.d. random variables and according to our
mechanism U2k,i is independent of Y1i condition on (U1i, . . . , U2k�1,i, X2i). Similarly,
we can show that (A.18) holds.
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APPENDIX B

PROOF OF (10)

Proof. From (2.8), we have

L
A
sum,1(0, D2) = min

PU1|X1

[I(X1;Y2) + I(Y1;U1, X2)] (B.1)

For dA = 0 and dB in (2.15) with distortion level D2, LA
sum,1(0, D2) = 2�H(2p(1�

p)) � maxP (U1|X1) H(Y1|U1, X2) where U = {0, e, 1} and

P (U1|X1) =

8
>>>>><

>>>>>:

↵0, if x = 0 and u = e

1 � ↵0, if x = 0 and u = 0
↵1, if x = 1 and u = e

1 � ↵1, if x = 1 and u = 1
0, otherwise

(B.2)

where E(dB(X1, U1)) = PX1(0)↵0 + PX1(1)↵1  D2. We have P (X1 = 0, U1 = 1) =
P (X1 = 1, U1 = 0) = 0 because otherwise E(dB(X1, U1)) = 1. Thus, we have

H(Y1|U1, X2) =
1

2
(1 � ↵0)H(p) +

1

2
(1 � ↵1)H(p) (B.3)

+[
↵0

2
(1 � p) +

↵1

2
p]H(

(1 � p)2↵0 + p
2
↵1

(1 � p)↵0 + p↵1
) (B.4)

+[
↵0

2
p +

↵1

2
(1 � p)]H(

p(1 � p)↵0 + p(1 � p)↵1

p↵0 + (1 � p)↵1
) (B.5)

H(Y1|U1, X2) is maximized if ↵0 = ↵1 = ↵, then the result is attained.
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APPENDIX C

PROOF OF THEOREM 6

We need to consider

L0 =I(Y1;U
K
, X2) + I(Y2;U

K
, X1) � �1I(X1;U

K
, X2) � �2I(X2;U

K
, X1)

+
X

x1,x2

�(x1, x2)
X

uK

P (uK |x1, x2) (C.1)

where the last term corresponds to the normalization constraint. By expanding L0

we have

L0 =
X

y1,uK ,x2

P (y1, u
K
, x2)log

P (y1, uK
, x2)

P (y1)P (uK , x2)
+

X

y2,uK ,x1

P (y2, u
K
, x1)log

P (y2, uK
, x1)

P (y2)P (uK , x1)

��1
X

x1,uK ,x2

P (x1, u
K
, x2)log

P (x1, u
K
, x2)

P (x1)P (uK , x2)
� �2

X

x1,uK ,x2

P (x1, u
K
, x2)log

P (x1, u
K
, x2)

P (x2)P (uK , x1)

+
X

x1,x2

�(x1, x2)
X

uK

P (uK |x1, x2) (C.2)

By di↵erentiating with respect to P (uj|uj�1
, x1) we have the following

@P (y1, uK
, x2)

@P (uj|uj�1, x1)
= P (x1, x2, y1, u

K
�j) (C.3)

@P (y2, uK
, x1)

@P (uj|uj�1, x1)
= P (x2, y1, u

K
�j) (C.4)

@P (x1, u
K
, x2)

@P (uj|uj�1, x1)
= P (x1, x2, u

K
�j) (C.5)

@P (uK
, x2)

@P (uj|uj�1, x1)
= P (x1, x2, u

K
�j) (C.6)

@P (uK
, x1)

@P (uj|uj�1, x1)
= P (x1, u

K
�j) (C.7)
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where u
K
�j is u

K � {uj}. By using above partial derivative, we now di↵erentiate L0

with respect to P (uj|uj�1
, x1).

@L0

@P (uj|uj�1, x1)
=

X

y1,x2,uK
j+1

P (x1, y1, x2, u
K�j) log(P (y1|x2, u

K))

+
X

y1,uK
j+1

P (x1, y2, u
K�j) log(P (y2|x1, u

K)) � �1

X

x2,uK
j+1

P (x1, x2, u
K�j) log(

P (x1, x2, u
K)

P (x2, u
K)

)

� �2

X

x2,uK
j+1

P (x1, x2, u
K�j) log(

P (x1, x2, u
K)

P (x1, u
K)

) + �̄(x1, x2) (C.8)

Dividing equations in (C.8) by P (x1, u
j�1) and rearranging and putting equal to zero

we have

� EX2|X1,Uj�1(D(P (y1|x1, x2, U
j�1)||P (y1|uj

, x2))) � D(P (y2|x1, U
j�1)||P (y2|x1, u

j))

� �1 log(P (uj|uj�1
, x1)) � �1D(P (x2|x1, U

j�1)||P (x2|uj)) + �1 log(P (uj)) + �̂(x1, x2, u
j�1

, �1, �2) = 0
(C.9)

where D(.||.) is KL distance and we absorb all the terms that don’t depend on Uj in
�̂.
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