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Abstract

In this report, we survey various methods in supervised and unsupervised learning. We study
supervised methods such as regression and classification. We briefly discuss dimension reduction
methods. We then investigate unsupervised parametric models such as K-means, Gaussian mixture
models and generalize them to infinite dimension mixture model using Dirichlet process mixture
model. We will also examine the Bayesian inference sampling. Also discussed is Monte Carlo
and Markov Chain Monte Carlo (MCMC) techniques which serve as the backbone for estimation
techniques. In particular, we study Gibbs sampler apply it to Dirichlet process mixture model in
order to sample from the posterior. Lastly, a worked out example for each topic is discussed and
the results are analyzed.
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1 Introduction
With advancement in data science and high dimensional data, the need to learn machine learning
methods increase. In this report, we present an overview of most used and common machine learning
algorithms in addition to simple examples that analyze them. This report contains both super-
vised and unsupervised methods. We explore parametric linear regression and classification models
and briefly generalize them to nonparametric regression/classification. Unsupervised parametric
models such as K-means and Gaussian mixture model (GMM) are reviewed and simple examples
are analyzed. We study Bayesian inference methods that are commonly used to do inference in
Bayesian learning setups. We briefly survey expectation-minimization algorithm to maximize the
log-likelihood. Moreover, Markov chain Monte Carlo (MCMC) methods are discussed. In partic-
ular, we study Gibbs sampler to draw from distributions which are generally difficult to compute.
A statistical review for variational Bayes based on Kullback-Leibler divergence is provided.
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2 Supervised Learning
2.1 Linear Regression
Assume the data D = {(X1, Y1), . . . , (Xn, Yn)} where Xj ∈ Rd and Yj ∈ R are observed. We would
like to predict the outcome of Y given a new X. We define the conditional prediction risk to be

R(f̂) = E[(Y − f̂(X))2|D] (1)

where f̂ is the regression function. In addition, we define the prediction risk to be

r(f̂) = ED[R(f̂)]. (2)

It can be shown the true regression function is f(x) = E[Y |X = x]. A linear predictor is a function
g(x) = βTx and the best linear predictor is the g that minimizes the prediction risk; in other words,
the best linear predictor is the β that minimizes the prediction error.

Lemma 1 Assume that Σ̂ = 1
n

∑
j
XjX

T
j is non-singular, then β that minimizes the empirical

prediction risk, training error, r̂(β) = 1
n

∑
j
(Yj − βTXj)

2, is

β̂ = Σ̂−1α̂ (3)

where α̂ = 1
n

∑
j
YjXj.

It is shown that for low dimensional linear regression the estimator β̂ is very close to the actual
minimizer that minimizes the prediction risk.

Theorem 1 Assume β∗ is the prediction risk minimizer. If the support of all joint distributions
over (X,Y ) are compact, then

r(β̂)− r(β∗) = OP(

√
1

n
) (4)

where n is the number of observed data1.

2.2 High Dimensional Linear Regression
If d > n then Σ̂ is singular and we no longer may use the least square error approach. There are
various ways to solve the linear regression problem in high dimension including:

• Lasso

• Ridge regression

• Principal component analysis

• Forward stepwise regression.

In this report we only talk about Lasso and PCA. In sections 2.2.1, 2.2.2 we study some properties of
lasso and ridge regression, respectively. Also in section 2.4 we discuss principal component analysis
in detail.

1Xn is OP(an) if P{|Xn
an

| > M} ≤ ϵ.
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2.2.1 Lasso

To solve the linear regression problem, we look for an appropriate k-dimensional subset of Covariates
such that Σ|k is invertible. Assume K is the subset of dimension k and XK is the collection of
Covariates such that Covariates belong to K ∈ K. We would like to choose K such that

E[(Y − βT
KXK)

2] (5)

is minimized. This optimization problem is equivalent to

E[(Y − βTX)2]

subject to ||β||0 ≤ k
(6)

where ||β||0 is the number of non-zero elements, norm zero. Unfortunately, this problem is not a
convex problem and the minimization is NP-hard. We therefore approximate Equation 6 with a
convex function. This approach lead to ”Lasso”. The best way to relax this non-convex problem is
replace norm zero by its convex approximation of it, meaning || · ||1. Relaxing this condition gives
us the following convex problem that is known as lasso. The lasso estimator β̂ is defined as the
minimizer of ∑

j

(Yj − βTX)2 + λ||β||1 (7)

for hyperparameter λ.
It is easy to check this problem is convex and the estimator can be found efficiently. This

estimator is sparse for large values of λ. There are theoretical results that show the lasso estimator
is close enough to the actual estimator under some conditions [1, 2].

2.2.2 Ridge Regression

Another way to relax the problem in 6 is to replace the || · ||0 by || · ||2. Hence, the problem
constitutes to find the β-minimizer for the following problem:∑

j

(Yj − βTX)2 + λ||β||2 (8)

for hyperparameter λ ≥ 0. It can be shown that the minimizer is

β̂ = (Σ̂ + λI)−1α̂ (9)

for Σ̂ and α̂ defined in Lemma 3. It is proven [3] that risk of the estimator, under mild conditions,
with high probability is close to the risk of actual estimator.

2.3 Linear Classification
In this report, we only consider binary classification problem. Generalizing classification to K class
may be done similarly. For the classification problem, we observe D = {(X1, Y1), . . . , (Xn, Yn)}
where Xj ∈ Rd and Yj ∈ {0.1}. The goal is to predict the label Y upon receiving new feature X. A
classification rule, i.e. classifier, is a hypothesis h : X ⊂ Rd → {0, 1} that predicts Y from received
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X and outputs a decision region. Linear classifiers output boundaries that are linear. This region
can be found through

h(x) = I(β0 + βTx > 0) (10)
for indicator function I and coefficients β. The decision boundary is thus defined as β0 + βTx = 0.
To find coefficients β, we need to minimize the risk. The classification risk is defined as

R(h) = P(Y ̸= h(X)). (11)

Lemma 2 The decision rule the minimizes the classification risk is

h∗(x) =

{
1 if f(x) > 1/2

0 otherwise
(12)

where f(x) = P(Y = 1|X = x).

However, we cannot compute the minimizer h this way since the distribution is not known. To
do so, we can estimate the classifier by replacing f(x) but its plug-in estimator f̂(x) in Equation
12. It can be shown [4, 2] that risk of plug-in estimator is as large as the square root of plug-in
estimation error.

2.3.1 Empirical Risk Minimization

Another way to approach this problem is to minimize the empirical risk over all β. We define β̂ to
be the minimizer of the empirical risk given as

R̂(h) =
1

n

n∑
j=1

I(Yj ̸= h(Xj)). (13)

It is shown that if ĥ is the empirical risk minimizer, then R(ĥ)−R(h∗) = OP (

√
(d+1) logn

n ).

2.3.2 Logistic Regression

Logistic regression is a discriminative approach to the binary classification problem and to estimate
f(x). In this model we define

f(x) = P(Y |X = x) =
exp (β0 + βTx)

1 + exp (β0 + βTx)
(14)

and by maximizing the likelihood using E-M algorithm, we can find β0 and β.

2.3.3 Gaussian Discriminant Analysis

Suppose we have the following model:

Y |π ∼ Bernoulli(π)
X|Y = 0 ∼ N (µ0,Σ0)

X|Y = 1 ∼ N (µ1,Σ1).

(15)
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Algorithm 1 Principal Components Analysis (PCA)
1: procedure PCA(X)
2: Compute Σ̂ = 1

n

∑
(Xi − X̄)(Xi − X̄)T

3: Compute eigenvalues and order them λ1 ≥ λ2 · · · ≥ λd of Σ̂
4: Compute corresponding eigenvectors v1, . . . , vd of Σ̂
5: Pick the best k-dimensional linear subspace

6: Define the reduced data to be Πk(X) = X̄ +
k∑

j=1
αjvj where αj = ⟨X, vj⟩.

The log-likelihood of the data is given by:

ℓ(µ0, µ1,Σ1,Σ2) = log
n∏

j=1

p(Xj , Yj |π, µ0, µ1,Σ1,Σ2) (16)

which can be expanded in terms of Equation 15. By maximizing the log-likelihood, we can find
π, µ0, µ1,Σ1, and Σ2.

2.4 Principle Component Analysis
In high dimensional data analysis, we need to approximate the lower dimension so that we do other
tasks in the lower dimensional space. Principle component analysis (PCA) algorithm assumes that
the number of observations n is a lot less than the number of features, d >> n. The goal is to find
the best k << d dimensional linear subspace to approximate the space. Without loss os generality,
we can assume that the mean is zero and we would like to find the projection of X onto the k-
dimension space sk. Let Σ = E(XXT ) be the Covariance matrix. Assume v1, v2, . . . , vd be the
eigenvectors corresponding to the ordered eigenvalues λ1 ≥ λ2 · · · ≥ λd. One can decompose the
Covariance matrix as follows:

Σ = V ΛV T

where V = [v1, . . . , vd] is the matrix containing eigenvectors and Λ = diag(λ1, . . . , λd).

Theorem 2 The best k-dimension linear subspace is the space spanned by v1, . . . , vk, i.e.,

Πk(X) =
k∑

j=1

αjvj (17)

where αj = ⟨X, vj⟩.

the risk function satisfies

Rk = E
(
||X −Πk(X)||2

)
=

d∑
j=k+1

λj . (18)

In practice, however, we replace the Covariance matrix by the sample Covariance matrix. The
algorithm is summarized in Algorithm 1 [5, 1, 3].
Example: Consider a three dimensional data. We would like to find the best 1-D linear subspace.
To do so, we draw 100 data points from a normal distribution N (0,diag(10, 5, 1)) and we run the
PCA algorithm. Figure 1 shows the best 1-D subspace derived using PCA algorithm 1.
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Figure 1: (a) Data (top) (b) Best 1-D linear subspace (bottom)

2.5 Factor Analysis
One of the dimension reduction methods is factor analysis. To this end, we assume that the number
of observations n is a lot less than the number of features, d >> n. The idea behind factor analytic
approach is to use independency between features to reduce the dimension. It is worth mentioning
that factor analysis is similar to PCA but not identical. Factor analysis is a generalization of PCA
which is based on maximum-likelihood.

Assume X = (X1, . . . , Xd) ∈ Rd is a d-dimension vector with mean µ = µ1, . . . , µd. We write
each feature as a linear combinations of k factors plus noise, i.e., Xj = µj +

∑k
i=1 γi,jFi + ϵi where

ϵi is the random noise with zero mean. We can rewrite this in terms of matrices:

X = µ+ ΓF + ϵ

. There are many F ’s that satisfy this condition. However, we restrict ourselves to F with mean
zero and variance I. We also assume F and ϵ are independent. Without loss of generality we can
assume µ = 0, then we have:

Cov(X) = Cov(ΓF + ϵ) =⇒ Cov(X) = Cov(ΓF ) + Cov(ϵ) = ΓCov(F )ΓT + Cov(ϵ)
Cov(X) = ΓΓT + Cov(ϵ)

(19)

One solution to this criterion satisfies Γ = ΓQ and F = QTF , where Q is any orthogonal matrix
[3, 1]. The best way to estimate F is through regression [3].
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2.6 Independent Component Analysis (ICA)
To mathematically state this problem, assume we have signal S ∈ Rd. However, we receive distorted
version of S which is X = AS. Note that A is unknown and is called mixing matrix. Assume we
repeat this n times and the goal is to recover signal S based on received X, meaning we look for
W such that S = WX. To be able to define ICA, it is necessary to assume signals do not have
Gaussian distribution but both X and S have zero mean. The idea is to find a metric to measure
non-Gaussianity since finding the independent components is equivalent to finding the directions
of largest non-Gaussianity. another way to study ICA is by minimizing the mutual information.
Figure 2 compares PCA discussed in Section 2.4 to ICA introduced here.

Figure 2: A comparison between ICA and PCA for two covariates

Note that maximizing the log-likelihood using stochastic gradient ascent learning, it turns out
that we can update W using the following formula (calculations and details may be found in [6])

W = W + λ

1− g(wT
1 X)

. . .
1− g(wT

nX)

 (20)

where λ is the learning rate, wj ∈ Rn is the j-th column of W ,and g(t) = 1
1+exp (−t) .
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3 Unsupervised Learning
3.1 K-means Clustering
One of the oldest unsupervised clustering methods is K-means clustering[1]. There are two school
of thoughts on choosing K; some think of K as number of clusters, some interpret K as a tuning
parameter that tends to be larger than the number fo actual clusters. In any case, we present K-
means algorithm as a projection of data onto the set of cluster centers. To make this more precise,
let X1, . . . , Xn ∼ P where Xj ∈ Rd and cluster center collection M = {µ1. . . . .µK} where µj ∈ Rd

. We choose M such that the following empirical risk is minimized:

R̂(M) =
1

n

n∑
j=1

||Xj −ΠM(Xj)||2 (21)

where ΠM(X) = argmin
µj∈M

||µk −X||2 is the projection of X onto M. Note that the algorithm that

minimizes Equation 21 is K-Means clustering algorithm. We summarize this algorithm in 2.

Algorithm 2 K-Means Clustering
1: Form M b y choosing K cluster centers µ1, . . . µK

2: Define cj = argmin
i
||µi −Xj ||

3: i-th Cluster Ci = {Xj : cj = i}
4: Update the Cluster Center:

cj ←
1

nj

∑
i:Xi∈Cj

Xi

where nj is the number of data points in Cj

5: Repeat till convergence
6: Return: M = {µ1. . . . .µK}

We Use K-means clusgtering algorithm to cluster 500 data points into two clusters {−1,+1}.
As shown in Figure 3 the means for the two clusters converges to the sample means of the data.
We also plot the risk function in Equation 21. Figure 4 demonstrates this risk function. Note that
K-means++ algorithm is introduced to choose the initial values. We do not discuss this method
here, however, one can find the detailed discussion on K-means++ in [7].

3.2 Gaussian Mixture Model
Mixture models are one of the most popular way to estimate the density of data as well as clustering
them. Assume the parametric family {p(·|θ) : θ ∈ Θ}, define mixture model as

Z = (z1, . . . , zK) ∼ multi(π)
Xj |θ, Z ∼ p(·|θzj ) j = 1, 2, . . . , N

(22)

where parameters π = (π1, . . . , πK) and {θj}Kj=1 are not known. If the set of parametric family is
Gaussian, we call this mixture model, Gaussian mixture model (GMM) and write:

p(x) =

K∑
j=1

πjN (x;µzj , σzj ) (23)
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Figure 3: (a) Data points into two clusters (b) Data points with no label (c) K-means clustering
algorithm applied to data to cluster data into K = 2

Figure 4: Risk function of K-means clustering for K = 2

For example, Figure 5 depicts mixture of two Gaussians. for this picture π = (0.25, 0.75), µ1 =
−1.5, µ2 = 2.5, and σ1 = σ2 = 1. As seen in Equation 22, GMM may be used for clustering. We
use this clustering method for N = 150 data points drawn from Gaussian distributions. Figure 6
shows the actual cluster and the estimated distribution using the mixture of two Gaussians.

3.2.1 Maximum Likelihood Estimation for GMM

As mentioned in Section 3.2, parameters π = (π1, . . . , πK) and {θj}Kj=1 are not known. To estimate
these parameters we use maximum likelihood estimator with respect to unknown parameters based
on i.i.d. observations X1, . . . , XN ∼ P. The likelihood function is

L =
N∏
j=1

( K∑
k=1

πjN (x;µk, σk)
)

(24)

To find the parameter estimators we maximize the log-likelihood instead, meaning

ℓ =

N∑
j=1

log
( K∑

k=1

πjN (x;µk, σk)
)

(25)
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Figure 5: Mixture of Gaussians for K = 2

Figure 6: Mixture of Gaussians for K = 2 even though there are three clusters

however, Equation 25 is not jointly convex and hence it is not clear what method is the best to
optimize this. One convenient and popular way to optimize this is through using E-M Algorithm
that will be discussed in Section 4.1.

3.3 Infinite Mixture Model
Section 3.2 investigates the mixture models, however there is an important question to answer. How
can one choose K? There are various methods to choose K such as cross validation. Nevertheless,
to be able to use the discussed methods, we need to specify K which can be a difficult task. The
main idea behind infinite mixture model is that we let K go to infinity so that we can create new
clusters as needed. We make this idea more precise in the next two sections.

3.3.1 Dirichlet Process

The most popular nonparametric model is Dirichlet process invented by Ferguson [8]. To estimate
the distribution through a Bayesian perspective we put a prior G on the space of infinite dimension,
i.e.,

F |G ∼ G

Xj |F ∼ F j = 1, . . . , N
(26)
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The most popular Bayesian nonparametric prior is Dirichlet process [9]. Dirichlet process introduces
a probability random measure over the space of distributions. Dirichlet process with concentra-
tion parameter α and base measure H is shown with DP(α, H). To define Dirichlet process,
assume that A1, . . . , Ak is a partition of the space Θ, we say G is a Dirichlet process if the vector
(G(A1), . . . , G(Ak)) ∼ Dir(αH(A1), . . . , αH(Ak)), where Dir is Dirichlet distribution. Although
this definition completely specify Dirichlet process, this definition is not constructive. Sethuraman
introduces a constructive method for Dirichlet process [10]. This method is based on stick-breaking
process. A draw from Dirichlet process G|H ∼ DP(α,H) can be constructed as

π ∼ GEM(α)

θj |H ∼ H j = 1, 2, . . .

G =
∞∑
j=1

πjδθj

(27)

Where δθ(Θ) = 1 if θ ∈ Θ and δθ(Θ) = 0 if θ /∈ Θ. Note that GEM(α) distribution is given by
π′
j ∼ Beta(1, α)

πj = π′
j

j−1∏
i=1

(1− π′
i).

(28)

This construction of Dirichlet process is known as stick-breaking process [11]. The Dirichlet process
for N (0, 1) and for 10000 MCMC sample is depicted in Figure 7.

Figure 7: A Draw from Dirichlet Process

It can easily be shown that E[G] = H. It can also be shown the posterior distribution of G
upon receiving measurements X1, . . . XN ∼ G is also a Dirichlet process. The following theorem
demonstrates this observation.
Theorem 3 AssumeX1, . . . XN ∼ G and G has the prior of Dirichlet process on it. Then, the
posterior distribution is a Dirichlet process, i.e.,

G|X1, . . . , XN ∼ DP(α+ n,H +

N∑
j=1

δXj ) (29)

Since the posterior is again a Dirichlet process with updated parameters, we can sample from it as
we do for the prior.
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3.3.2 Dirichlet Process Mixture Model

Dirichlet process is exploited as a prior over distribution space and can estimate the distributions.
However, we sometimes need to estimate the density of a continuous random variable. Dirichlet
process is not appropriate prior over the space of densities since (a) Dirichlet process is discrete with
probability one (b) Dirichlet process does not have density. This leads us to generalize Dirichlet
process to Dirichlet process mixture model. Assume X1, . . . , XN ∼ p, infinite mixture model can
be summarized as

G|H ∼ DP(α,H)

θj |G ∼ G

Xj |θj ∼ p(·|θj).
(30)

One can marginalize out G and rewrite the Dirichlet process mixture model as:

π ∼ GEM(α)

θj |H ∼ H

zj |π ∼ Cat(π)
Xj |θj , zj ∼ p(·|θzj ).

(31)

The Equation 31 can then be written as p(x) =
∞∑
j=1

πjp(x|θj), which can be seen that it is similar to

22 when K →∞. There is more technicality for this observation which can be found in [12]. We use
this infinite mixture model using Gaussian p = N (θ) and NIW distribution as base distribution.
Figure 8 shows the Dirichlet process mixture model.

Figure 8: Dirichlet process mixture model for Gaussian distribution

Dirichlet process and Dirichlet process mixture models may not address the dependency among
samples. Dependent Dirichlet process introduces a nonparametric prior over evolving mixture
models. The dependent Dirichlet process (DDP) originally introduced by MacEachern led to the
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development of the DDP mixture model [13, 14]. The DDP mixture model generalizes Dirichlet
process mixture model by considering birth, death and transition processes for the clusters in the
model and has variety of applications including in tracking multiple objects [15, 16, 17]. A special
case of DDP is hierarchical Dirichlet process that provides a relationship between grouped data
[18, 19, 20, 21, 22]. A generalization of Dirichlet process is two-parameter Poisson-Dirichlet process
that was introduced by Ptiman and Yor [23]. This process has found many applications in topic
modeling, word clustering, and tracking [22, 24, 25, 26].
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4 Inferential Methods
4.1 Expectation-Maximization Algorithm
Expectation-Maximization Algorithm (EM Algorithm) is an algorithm to alternatively maximize
the likelihood function. In particular, given data points X1, . . . , XN ∼ p(x|θ), we would like to
estimate unknown parameters θ. We have latent variables model p(x, z|θ) with z being the latent
variable (which is assumed to take finite number of values). Therefore, p(x|θ) =

∑
z p(x, z|θ). To

estimate the parameters we need to maximize the likelihood L(θ). The goal is to find the maximum
likelihood estimator θ̂MLE = argmin

θ
L(θ). Instead, we can optimize the log-likelihood

ℓ(θ) =
∑
x

log
∑
z

p(x, z|θ). (32)

However, maximizing the likelihood is troublesome since the summation make the distribution a
multimodal distribution. We instead find a lower bound and maximize the lower bound to be the
closest to the log-likelihood, meaning for distribution over all z, Q

log(p(x|θ)) = log(
∑
z

p(x, z|θ)) = log(
∑
z

Q(z)
p(x, z|θ)
Q(z)

) ≥
∑
z

Q(z) log
p(x, z|θ)
Q(z)

(33)

where the last inequality is due to Jensen’s inequality. For this bound to be tight, Q(z) ∝ p(x, z|θ).
Furthermore, Q(z) = p(z|x, θ) which is the posterior distribution of Z given the data. The inequality
in Equation 33 is called evidence lower bound (ELBO) and show by ELBOQ(θ). We can rewrite
Equation 33 as follows:

log(p(x|θ)) ≥ ELBOQ(θ). (34)

Intuitively speaking, EM algorithm alternates between updating Q and θ by first setting Q(z) =
p(z|x, θ) and hence log(p(x|θ)) = ELBOQ(θ) and then by maximizing ELBOQ(θ) with respect to θ
for fixed Q. EM algorithm is summarized in Algorithm 3.

Algorithm 3 EM Algorithm
1: Initialize θ0 ∈ Θ
2: for dot = 0, 1, 2, . . .
3: E-Step Q(θ, θt) = Eθt [log(p(x, z|θ))|X = x]
4: M-Step θ̂t+1 = argmin

θ
Q(θ, θt)

5: Iterate till convergence

4.2 Markov Chain Monte Carlo Methods
Markov chain Monte Carlo (MCMC) methods are the most used inferential methods which provide
exact samples from the target distribution for any problem with probabilistic interpretation with
some parameters e.g., many problems in machine learning, optimization, and statistics. These
inferential methods utilize independent samples of distribution to analyze the distribution for which
explicit computation of the distribution is difficult.
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Many inference tasks such as computing the marginal can be represented as the integral and
therefore, as the expected value of some appropriately chosen function [27, 5]. Hence, due to the
law of large number, it can be described by the empirical mean of independent random variables.

There are various Monte Carlo methods that offer different approaches to generate independent
samples; most of which are based on the random walk. These methods are based on choosing a
proposal distribution and thus are very sensitive to the step size. The idea to generate independent
samples is to design a first order Markov chain with the target stationary probability distribution
where in the limit, distribution of the samples converges to the target distribution. It is shown that
due to the ergodic theorem, the stationary distribution is approximated by the empirical measures
of the random states of the MCMC sampler [28]. The main idea is originated from the simple
observation that is stated in the following theorem.

Theorem 4 the following statements are equivalent:

(i) X ∼ p(x)

(ii) (X,U) ∼ Unif{(x,u) : 0 ≤ u ≤ p(x)}.

Two of the main Markov chain Monte Carlo methods are Metropolis-Hasting and Gibbs sampling.
In addition to random walk based MCMC methods, we explore the elegant slice sampling method
to solve the issues with these methods. We briefly study some of the methods that are used in this
thesis.

4.3 Generalized Importance Sampling
Importance sampling approach is an MCMC sampling method to estimate the expected value.
This method is based on a proposal distribution and thus, relies on importance functions. Suppose
p(x) = p̄(x)/Z can be evaluated up to the normalizing constant Z. Choose proposal distribution
q(x) such that q(x) is absolutely continuous with respect to p(x) meaning supp(p(x)) ⊂ supp(q(x))
and draw x1, . . . ,xN ∼ q(x) then, for some function h

1

N

N∑
j=1

ωjh(xj)→ Ep[h(X)] =

∫
h(x)q(x)

p(x)

q(x)
dx (35)

as N → ∞, where ωj =
ω̃j∑
j ω̃j

and ω̃j =
p̄(xj)
q(xj)

. Therefore, the expected values is estimated using
the importance functions {ω̃j}Nj=1. It is shown this estimation is asymptotically consistent [29].

In this section, we provide a general framework for importance sampling based on dependent
proposal distributions and adaptive algorithms where it provides an unbiased estimator for the
target expected value. It is proven that dependency in the samples still preserves the unbiasedness
property [30]. The following lemma shows that the modification of importance weights by a kernel
preserves the unbiasedness of the estimator.

Lemma 3 if p and q are distributions such that p << q and importance weight ω̃ = p(x)
q(x) , then for

any kernel K(x,x′) with stationary distribution p∫
ω̃K(x,x′)q(x) = p(x′) (36)
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Algorithm 4 Dynamic Importance Sampling
Input: (x, ω̃), and K(x,x′) where ω̃ = p̄(x)

q(x)
for k = 1,2, … do

Draw x′ ∼ K(xk,x
′)

Compute γk = ω̃ p(x′)K(x′,xk)
p(x)K(xk,x′)

Draw u ∼ Unif(0, 1)
(xk+1, ω̃k+1)← (x′, (1+δ)γk

c ) if u < c

(xk+1, ω̃k+1)← (xk,
(1+δ)ω̃k

1−c ) if u > c
where c = γk

γk+η(xk,ωk)
, δ > 0 and η are either constant or independent

Since the kernel K(x,x′) corresponds to the target distribution, it can correct the poor choice of
proposal distribution. A dynamic approach to importance sampling is introduced in [31]. The
intuition for this algorithm is that We summarize this method in Algorithm 1.

4.4 Metropolis-Hastings Algorithm
Metropolis-Hastings algorithm is the universal MCMC algorithm where it produces an ergodic
Markov chain whose stationary distribution is the target distribution p. In particular, we aim to
draw samples from the posterior distribution p(θ|z). We draw samples θk sequentially based on a
Markov chain. We construct a Markov chain K such that for large enough k, θk is drawn from the
desired posterior distribution, i.e., Kk → p(θ|z). Suppose that Markov chain K is irreducible2 and
aperiodic3 whose stationary distribution is p. Since p is the stationary distribution, it follows the
detailed balance condition,

K(x,y)p(y) = K(y,x)p(x) (37)

Metropolis-Hastings algorithm starts by selecting an easy to implement conditional distribution
q(·|·) which is absolutely continuous with respect to the target distribution. Without loss of gen-
erality we can assume q(x|y)p(x) > q(y|x)p(y), and hence there exist an acceptance probability
0 ≤ α(x,y) ≤ 1 such that

q(x|y)p(x) = α(x,y)q(y|x)p(y) =⇒ α(x,y) = min
{
1,

q(x|y)p(x)
q(y|x)p(y)

}
(38)

It is shown in [32], the transition kernel associated with this equation follows

K(x,Θ) =

∫
Θ
α(x,y)q(y|x)dy + 1x(Θ)

(
1−

∫
Θ
α(x,y)q(y|x)dy

)
(39)

The Metropolis-Hastings algorithm associated with the target density p with conditional proposal
distribution q produces a Markov chain {xk}k using 39. This method is referred to as Metropolis-
Hastings algorithm and summarized in Algorithm 5.

Theorem 5 Suppose that the Markov chain produced by Metropolis-Hastings is p-irreducible, then
2All states can communicate with one another with positive probability in finite time.
3To ensure uniqueness of stationary distribution almost surely.
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Algorithm 5 Metropolis-Hastings Algorithm.
Input: proposal distribution q(·|·)
Initialize X0 at random
for k=0,1,2,… do

Draw yk+1 ∼ q(·|Xk = xk)
Draw uk+1 ∼ Unif(0, 1)
Compute the acceptance probability α(xk,Yk+1) in 38
if uk+1 ≤ α(xk,Yk+1) then

xk+1 ← yk+1

else
xk+1 ← xk

Burn-in Dismiss the first x1, . . .xr

a) For any function g ∈ L1(p),

lim
N→∞

1

N

N∑
k=1

g(xk) =

∫
g(x)dP(x) (40)

b) If Xk is aperiodic, then for every initial distribution ν

lim
N→∞

||
∫

KN (x, ·)ν(dx)− p||TV = 0. (41)

Choice of q result in different Metropolis-Hastings algorithms. We study two main choices of q
next.
Independent Metropolis-Hastings: When q(x|y) is independent of Y, that is, q(y|x) = q(y).
This leads to an algorithm called Independent Metropolis-Hastings algorithm. In this case, the
acceptance probability α(x,y) is simplified to

α(x,y) = min
{
1,

q(x)p(x)

q(y)p(y)

}
. (42)

Although Yk’s are generated independently in Algorithm 5, the resulting samples Xk’s are not
i.i.d. since, for instance, probability of acceptance of Yk relies directly on Xk.
Random Walk Metropolis-Hastings: When q is symmetric, that is, q(x|y) = q(y|x). This
leads to a method which is referred to as Metropolis-Hastings random walk algorithm. In this case
proposal distribution q depends only on |x− y|. In this case, the acceptance probability α(x,y) is
given by

α(x,y) = min
{
1,

p(x)

p(y)

}
. (43)

Despite simplicity of computing the acceptance probability, this method tends to converge with
slower rate. In addition, the random walk Metropolis-Hastings algorithm does not satisfy the
uniform ergodicity property [33].
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Algorithm 6 Two-Stage Gibbs Sampler to Sample form p(x,y)

Initialize (x0,y0)
for k=1,2,… do

xk ∼ p(·|yk−1)
yk ∼ p(·|xk)

Repeat until convergence

4.5 Gibbs Sampling
Gibbs sampling, also known as alternating conditional sampling, is a special case of Metropolis-
Hastings algorithm where we partially update our vector. Gibbs sampler is mostly used when
computing the conditional distribution is not complicated. The idea is to use the conditional
distribution associated with the target distribution to generate samples from it. In the section,
we first study the Gibbs sampler for two variables and then generalize it to a vector of random
variables with straightforward conditional distributions. Gibbs sampling can be very slow if the
parameters in target distribution are highly correlated. To avoid this issue, one can re-parametrize
the parameters of interest. Consider the joint probability density p(x,y) on the product space
X × Y. Based on 4, define E(p) = {(x,y,u) : 0 ≤ u ≤ p(x,y)}. We generate

• x uniformly on Ex(p) = {x : u ≤ p(x,y)} or equivalently from Ex(p) = {x : u
pY(y) ≤ p(x|y)}.

• y uniformly on Ey(p) = {y : u ≤ p(x′,y)} or equivalently from Ey(p) = {y : u
pX(x) ≤ p(y|x′)}.

• u uniformly on {u : 0 ≤ u ≤ p(x′,y′)}.

However, if we leave y fixed and repeat this procedure infinite times, we end up with the samples
from p(x|y). One can do the same along y and end up with the samples from p(y|x). We summarize
this procedure in Algorithm 6. To illustrate the two-state Gibbs sampling procedure, we assume
X = (X,Y) ∼ N (µ,Σ) for unknown mean µ = (θ1,θ2) and known covariance matrix

Σ =

[
1 ρ
ρ 1

]
.

Assuming a uniform distribution as prior on µ, according to ??, the conditional posterior
distribution is given by

θ1|θ2,X ∼ N (X+ ρ(θ2 −Y), 1− ρ2)

θ2|θ1,X ∼ N (Y + ρ(θ1 −X), 1− ρ2).
(44)

9 demonstrates the Gibbs sampler for this model for 10,000 iterations and ρ = 0.5 and burn in
r = 100 A Markov Chain Monte Carlo sampling method for Dirichlet processed in introduced in
[34]. In particular, the Gibbs sampling implementation of Dirichlet process is discussed in [35, 36].
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Figure 9: Gibbs sampler for a bivariate Gaussian distribution with 10,000 simulations.

5 Conclusion
In this report, we surveyed both supervised and unsupervised learning. We provided examples
that support the theory. We discussed Bayesian inference methods and showed through examples
that these methods converge to the posterior. Furthermore, we studied a Bayesian nonparametric
model, Dirichlet process. We provided examples that demonstrated that Dirichlet process is discrete
and thus is not appropriate to be used for density estimation. Instead, we use a generalization of
Dirichlet process known as Dirichlet process mixture model to estimate the densities. This can be
viewed as generalization of discussed Gaussian mixture model. Sampling methods are also provided.
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