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Abstract

This report surveys the main methods for estimation of dynamic parameters that are em-
bedded in stochastic processes using popular methods such as the linear Kalman filter and
suboptimal nonlinear extensions such as the extended and unscented Kalman filter. We will
also examine the sequential importance sampling, resampling, and auxiliary particle filter.
We survey the hidden Markov chain and outline its properties. A worked out example for
each topic is discussed and the results are analyzed for performance.
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1 Introduction
In many engineering applications, problem of dynamic system that is embedded in noise
appears. In Bayesian statistics, to analyze a dynamic system we construct a probability
density function of the state variables based on the physical model and noise. Then we
estimate the state according to a tail recursion. To recursively do Bayesian inference, esti-
mation of the state follows two core steps: (A) the prediction step in which we predict the
state distribution given the observations up to that time and (B) Update step in which we
update our prediction upon receiving new observations. Suppose K(xk−1, xk) is a probability
transition kernel following the physical system and the likelihood probability p(zk|xk) which
determines the probability of generating the measurement zk conditioned on knowing the
state xk. Given the set of measurements collected up to time (k−1), Zk−1 = {z1, z2, ..., zk−1},
the Chapman-Kolmogorov equation[referecne] provides

p(xk|Zk−1) =

∫
xk−1

p(xk−1|Zk−1)K(xk−1, xk)dxk−1 (1)

Equation 1 is called prediction equation. Upon receiving the measurement zk at time k,
Bayes rule leads to the update equation:

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1) (2)

where the proportionality constant equals∫
xk

p(zk|xk)p(xk|Zk−1)dxk. (3)

However, analytical computation of the integral in equation 3 is almost always intractable. In
this report, we investigate special cases that analytically computing this integral is possible.
Furthermore, we generalize to methods such that this integral is numerically approximated.
We provide simulations to support the introduced methods.
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2 Recursive Bayesian Estimation
2.1 Kalman Filter
Suppose we have a linear dynamic system with Gaussian noise. It is shown [1, 2] that in
this case thew Bayesian inference introduces in section 1 is tractable and can analytically
be computed. This dynamic system first studied by Kalman in 1973. Here we detail this
model,

Let xk and x̂k be the state and its estimate, respectively. It turns out there a recursive
algorithm known as Kalman Filter to estimate x̂k. As any Bayesian inference modeling, this
method contains two main steps; prediction and update. To do this end, the following linear
dynamic system is considered

xk = Ak−1xk−1 + uk (4)
zk = Bkxk + vk (5)

where equations 4 and 5 are known as motion and measurement equations, respectively. An
i.i.d. Gaussian noise is assumed, that is, uk ∼ N (µu,k,Σu,k) and vk ∼ N (µv,k,Σv,k). For
simplicity, we assume that the matrices Ak, Bk do not vary with time, that is, Ak = A and
Bk = B. Without loss of generality, we assume µu,k = 0 and µv,k = 0, and assume that
covariance matrices are stationary in time meaning Σu,k = Σu and Σv,k = Σv. The prediction
and update distributions follow

Predictive distribution: xk|Zk−1 ∼ N (xk; x̂k|k−1, Σ̂k|k−1) (6)
Update distribution: xk|Zk ∼ N (xk; x̂k|k, Σ̂k|k) (7)

where x̂k|k−1 and x̂k|k are the prediction estimate and update estimate upon receiving the
measurements at time k and equal

x̂k|k−1 = Ax̂k−1|k−1

Σ̂k|k−1 = σu + AΣ̂k−1|k−1A
T

x̂k|k = Wk(zk −Bx̂k|k−1)

Σ̂k|k = Σ̂k|k−1 −WkBΣ̂k|k−1

(8)

where Wk = Σ̂k|k−1B
T (BΣ̂k|k−1B

T + Σv)
−1.

It is shown [1, 2] that the Kalman filter is the optimal linear estimator meaning the
Kalman filter minimizes the mean square error of the estimated parameters under when the
linear state-space assumption. The Kalman filter is popular becasue:

• Kalman filter produces good results in practice due to optimality and structure.

• The process is real time.

• It is easy to implement and measurement equation does not need to be inverted.
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• It has found many applications in radar tracking, robot localization, map building,
and many more applications.

The main issues with Kalman filter is that what if the transitioning does not follow a linear
dynamic system or what if the noise is not Gaussian. Nonlinear estimators such as extended
Kalman filter, unscented Kalman filter are generalizations of the Kalman filter which are
studied in detail in [3, 2]. Particle filter and Markov chain Monte Carlo methods are other
methods of approximating the posterior distribution. We discuss Particle filter in detain in
the next section.

2.1.1 Simulations: Kalman Filter Target Tracking

Consider the linear dynamic system in equations 4, 5 for a moving target with constant
velocity and altitude. Let xk = [x, y, ẋ, ẏ]T ∈ R4 be the state vector at time k where
indicates the x-position, y-position, x-velocity, y-velocity, respectively. Let zk ∈ R4 be the
noisy measurement at time k. Assume that motion equation follows

xk
yk
x̂k
ŷk

 =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1



xk−1

yk−1

x̂k−1

ŷk−1

+ uk (9)
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Figure 1: Estimating the location and velocity of the target using Kalman filter.
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and the measurements equal
xk
yk
x̂k
ŷk

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



xk−1

yk−1

x̂k−1

ŷk−1

+ vk (10)

where uk ∼ N (04×1,Σu) and vk ∼ N (04×1,Σv) for Σu = I4 and

Σv = S

(
T 3
s

3
T 2
s

2
T 2
s

2
Ts

)
⊗ I2

where S is the noise intensity, Ts is the sampling period, and ⊗ indicates the Kronecker
product. Figure 1 shows the estimate using Kalman filter.

2.2 Point Mass Filter
Dynamic systems are often non-linear and hence the Kalman method does not work. In
Bayesian inference, we need to compute the posterior distribution. However, computing the
posterior can be intractable. Particle filter introduces a method to approximate the posterior
distributions. The fundamental idea is to draw sufficiently large number of particles and
approximate the probability density p by the point mass,

p̂(x) =
N∑
i=1

wiδxi(x) (11)

where xi is drawn from the proposal distribution q and wi = p(.)/q(.) is the corresponding
weight. Note that δ is the Dirac function. We approximate the posterior distribution p(xk|Zk)
and x̂k using the point mass method.

Assuming that

p(xk−1|Zk−1) =
N∑
i=1

wik−1|k−1δxik−1
(xk−1). (12)

Intuitively speaking, wik−1|k−1 ≈ p(xik−1|zk). Consider the dynamic system

xk = f(xk−1) + uk

zk = g(xk) + vk
(13)

with f and g being two possibly nonlinear functions. Equation 13 gives the probability tran-
sition kernel K(xk−1, xk) = p(xk|xk−1) and the likelihood p(zk|xk). the prediction equation
1 can be approximated by

p(xk|Zk−1) ≈
∫
xk−1

N∑
i=1

wik−1|k−1δxik−1
(xk−1)p(xk|xk−1)dxk−1

=
N∑
i=1

wik−1|k−1p(xk|xik−1)

(14)
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and hence the prediction probability is approximated by

p(xk|Zk−1) =
N∑
i=1

wik|k−1δxik(xk) (15)

for i = 1, . . . N and

wik|k−1 =
N∑
i=1

wik−1|k−1p(xk|xik−1).

The update equation 2, therefore, equals

p(xk|Zk) ∝ p(zk|xk)
N∑
i=1

wik|k−1δxik(xk) (16)

and the proportional constant p(zk|Zk−1) can be computed as

p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk−1

≈
∫
p(zk|xk)

N∑
i=1

wik|k−1δxik(xk)dxk−1

=
N∑
i=1

wik|k−1p(zk|xik).

(17)

Combining 16 and 17, we have

p(xk|Zk) =
N∑
i=1

wik|kδxik(xk) (18)

where
wik|k =

wik|k−1p(zk|xik)
N∑
j=1

wjk|k−1p(zk|x
j
k)

.

The posterior mean gives us the x̂k,

x̂k = E
[
p(xk|Zk)

]
≈

N∑
i=1

wik|kx
i
k. (19)

2.3 Particle Filter
Using the point mass filter method we can write

p(xk|Zk) =
N∑
i=1

wikδxik(xk) (20)
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where
wik =

p(xik|Zk)
q(xik|Zk)

.

We can recursively compute the weights as

wik = wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
(21)

and w0 = 1/N uniformly chosen. While uk ∼ N (µu,Σu) and vk ∼ N (µv,Σv), it is shown
that the optimal proposal density gives

wik = wik−1p(zk|xik) (22)

where the likelihood function is

p(zk|xik) ∝ exp
[
− 1

2
(zk − g(xik))

TΣ−1
v (zk − g(xik))

]
(23)

This is called bootstrap filter [4]. This algorithm is summarized in Algorithm 1. The

Algorithm 1 Bootstrap Algorithm
1: Input: zk, {xik−1, w

i
k−1}Ni=1

2: Output: xk, {xik, wik}Ni=1

3: for i = 1, 2, . . . , N do
4: Draw xik ∼ p(xk|xik−1)
5: Update w̃ik = wik−1p(zk|xik)

6: L =
N∑
j=1

w̃ik

7: for i = 1, 2, . . . , N do
8: Normalize the weights wik = L−1w̃ik
9: Estimate x̂k using 19

10: Return

variance of the estimate increases with N [5, 4]. A solution to this issue is resampling
method. Intuitively speaking, assuming p̂ to be the approximate of p. This approximation
is based on the samples drawn from the proposal distribution q. However, these samples are
not from the actual p. To make these samples as close as possible to the samples from p,
we sample from p̂ which is equivalently obtained by sampling with replacement from these
samples. The resampling algorithm is summarized in Algorithm 2.

Combining the particle filter algorithm 1 and the resampling algorithm 2, the sequential
importance resampling algorithm is obtained and summarized in Algorithm 3.
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Algorithm 2 Resampling Algorithm
1: Input: {xik, wik}Ni=1

2: Output: {x̃ik, w̃ik}Ni=1

3: λ1 = w1
k

4: for i = 2, . . . , N do
5: λi = λi−1 + wik
6: ℓ = 1
7: Draw u ∼ Unif(0, 1/N)
8: for i = 1, 2, . . . , N do
9: ui = u1 +

(i−1)
N

10: while ui > λℓ do
11: ℓ = ℓ+ 1

12: x̃ik = xℓk
13: w̃ik = wℓk
14: Return
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Figure 2: Estimating the location and velocity of the target using Particle filter method.

2.3.1 Simulations: Particle Filter Target Tracking

Applying the Particle algorithm in Algorithm 3 to the problem described in section 2.1.1.
Figure 2 depicts this method.

The RMSE comparison between Kalman filter and Particle filter is provided and depicted
in Figure 3.
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Algorithm 3 Sequential Importance Resampling Algorithm
1: Input: zk, {xik−1}Ni=1

2: Output: xk, {xik}Ni=1

3: for i = 1, 2, . . . , N do
4: Draw xik ∼ p(xk|xik−1)
5: Update w̃ik = wik−1p(zk|xik)

6: L =
N∑
j=1

w̃ik

7: for i = 1, 2, . . . , N do
8: Normalize the weights wik = L−1w̃ik
9: Resample using Algorithm 2 to obtain {x̃ik, w̃ik}Ni=1

10: Estimate x̂k =
N∑
i=1

w̃ikx̃
i
k

11: Return
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Figure 3: RMSE comparison between Kalman filter and Particle filter methods.

3 Hidden Markov Model
Hidden Markov models (HMMs) are widely used in many applications including pattern
recognition, video processing, and tracking. In this section, we survey the HMM and their
applications in machine learning and object tracking. We discuss the advantages and disad-
vantages of HMM [6, 7].
Definition: A Markov chain is a sequence of random variables such that the probability
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Figure 4: Hidden Markov model for observations z1, . . . , zt for latent variable x1, . . . , xt.

distribution at time (t+ 1) only depends on t, that is,

Pr(Xt+1|Xt, . . . , X1) = Pr(Xt+1|Xk) = K(Xt, Xt+1) (24)

where Pr(Xt+1 = xt+1|Xt = xt) = K(xt, xt+1) is the transition kernel, where∑
xt+1

K(xt, xt+1) = 1.

Definition: A hidden Markov model (HMM) is a sequence of random variables, Z1, . . . , Zt
such that the distribution of Zt depends only on the hidden state xt of an associated Markov
chain.

Let X and Z be the finite set of states and the fintie set of observations, respectively. For
transition kernel K : X × X → [0, 1] and P : X × Z → [0, 1] is the observation probability.
Assume that π : X → [0, 1] is the prior distribution on the initial state x0.

Given the Markovity of the states and observations depicted in Figure 4, we may write
that joint distribution is of the form

p(x0, x1, . . . , xt, z1, . . . , zt) = π(x0)K(x0, x1)
t∏
i=1

K(xi, xi+1)P (zi|xi) (25)

Given Equation 25, we can do filtering and smoothing. In other words, we can compute
how likely it is to observe measurements z1, . . . , zt, i.e., p(z1, . . . , zt), or given a set of obser-
vations, how likely the current state is, i.e., p(Xt = xt|z1, . . . , zt). Assuming we have total
observations of T ,

p(z1, . . . , zt) =
∑

x0,...,xT

p(x0, x1, . . . , xT , z1, . . . , zT )

=
∑

x0,...,xT

π(x0)K(x0, x1)
t∏
i=1

K(xi, xi+1)P (zi|xi).
(26)

We also can do filtering by calculating p(Xt = xt|z1, . . . , zT ),

p(xt|z1, . . . , zT ) ∝ p(xt, z1, . . . , zT )

= p(zt+1, . . . , zT |xt)p(xt, z1, . . . , zt)
(27)
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However, with the total law of probability the forward algorithm can be derived as follows

p(xt, z1, . . . , zt) =
∑
xt−1

P (zt|xt)K(xt−1, xt)p(xt−1, z1, . . . , zt−1) = αt(xt) (28)

and the backward algorithm is derived as

p(zt+1, . . . , zT |xt) =
∑
xt+1

K(xt, xt+1)P (zt+1|xt+1, xt)p(zt+2, . . . , zT |xt, xt+1, zt+1) = βt(xt)

(29)
and therefore,

βt(xt) =
∑
xt+1

K(xt, xt+1)P (zt+1|xt+1, xt)βt+1(xt+1). (30)

4 Multiple Object Tracking
Multiple object tracking(MOT) has drawn attention in may fields of study. One of methods
to go about MOT problem is through random finite set (RFS). The problem of MOT is
the joint estimate of number of objects and trajectories upon receiving measurements. Each
object may stay or leave the field of view. Number of new objects may also come to the scene.
Let Nk−1 be the number of objects at time (k− 1). Suppose {x1,k−1, . . . , xNk−1,k−1} ∈ XNk−1

be the set of objects at time (k − 1). Each object may leave with probability 1 − Pk|k−1 or
may stay with probability Pk|k−1 and transitions to the next step through transition kernel
probability p(xk|xk−1). Measurements {z1,k, . . . , zMk,k} ∈ ZMk are received at time k. Given
the state xk, the measurement zk is drawned from p(zk|xk). The goal is to jointly estimate
the number of objects and their states from measurements. In this survey, we outline two
main RFS-based filters for multiple object tracking. We also study the main properties of
RFS [8, 9, 10].

4.1 Random Finite Set
An RFS X is a random variable taking values in σ(X), where σ(X) does not have the
properties a regular sigma-field. Detailed properties of RFS σ(X) are discussed [11]. We
discuss some of these properties in this report upon which we build the next sections.

An RFS X has nonnegative density of π on σ(X) such that for any B ⊆ X

Pr(X ⊆ B) =
∫
B
π(X)δ(X) (31)

where the integral is a set integral defined as [10]∫
B
π(X)δ(X) =

∞∑
i=0

1

i!

∫
Bi

π(x1, . . . , xi)d(x1, . . . , xi). (32)
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Note that π(X) is not a probability density in a common sense. However, if U is the unit
hyper-measure of X , then π(X)U |X| is a probability density.

In a multi-object tracking using RFS, the posterior distribution has the same form as the
regular posterior distribution, i.e.,

π(X|Z) = π(Z|X)π(X)∫
π(Z|X)π(X)δX

. (33)

Where π(Z|X) is the likelihood function. Maximizing the posterior distribution gives the
estimate

X̂ = argmax
{X:|X|=n̂}

π(X|Z) (34)

where n̂ = argmaxn ρ(n|Z).

Example 1: Bernoulli RFS X
An RFS X is Bernoulli RFS for which it has probability (1 − r) of being empty and

probability r of being a singleton {x} whose density is p(x), that is,

π(X) =

{
1− r X = ∅
rp(x) X = {x}

. (35)

Example 2: Multi-Bernoulli RFS X
Multi-Bernoulli RFS X is a union of n independent Bernoulli RFS. The cardinality

distribution of an RFS is
ρ(n) = Pr(|X| = n). (36)

And hence the RFS characterization follows

π({x1, . . . , xn}) = n!ρ(n)
n∏
i=1

p(xi). (37)

4.1.1 Multi-Object Tracking Modeling through RFS

In a multi-object tracking setup, each object xk−1 ∈ Xk−1 generates a Bernoulli RFS
Sk|k−1(xk−1) at time k. New objects at time k are modeled by a birth RFS Γk. The multi-
object state transition equation

Xk =
∪

xk−1∈Xk−1

Sk|k−1(xk−1) ∪ Γk. (38)

The set Xk−1 can evolve to Xk according to a transition density ϕ(Xk|Xk−1) which captures
the births and deaths.
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An RFS based model for the observations is, for any xk ∈ Xk, generate a Bernoulli RFS
ϵK(xk), and generate Zk from Xk via the measurement equation. And an RFS ηk to model
the false detections, i.e.,

Zk =
∪

xk∈Xk

ϵK(xk) ∪ ηk. (39)

In general, the measurements are generated according to the likelihood function ψ(Zk|Xk).

4.1.2 Recursive Bayesian Inference

With using RFS, the posterior distribution p(Xk|Zk) for multi-object tracking can be com-
puted the same way as a single object tracking method. We compute the prediction and
update recursively. The Bayesian prediction equation is

p(X|Zk−1) =

∫
ϕ(X|Y )p(Y |Zk−1)δY (40)

and the update equation

p(X|Zk) =
ψ(Zk|X)p(X|Zk−1)∫
ψ(Zk|Y )p(Y |Zk−1)δY

. (41)

4.2 Probability Hypothesis Density Filter
The first moment of an RFS is probability hypothesis density (PHD) which is known as
density function [12, 13]. PHD is a function ν ≥ 0 such that

E
[
|X ∩ B|

]
=

∫
B
ν(x)dx (42)

for any region B ⊆ X . It is shown in [13] that

ν(X) =

∫
π({x} ∪X)δX. (43)

and n̂ = argmaxn ρ(n) or n̂ = E[|X|].
The probability hypothesis density (PHD) filter is a Bayes approximate of the multi-

object filter which is based on point processes [13].In this method, first moment of p(·|Zk)
is propagated, ν(·|Zk). In this filter, a Poisson RFS is assumed. The PHD filter prediction
equals

νk|k−1(x) = ⟨PS,k|k−1ϕ(x|·), νk−1⟩+ γk(x) (44)
where ⟨·, ·⟩ represents the inner product, PS,k|k−1 is the survival probability, and γk(x) rep-
resents the birth, for instance, a Gaussian mixture birth PHD is

γk(x) =

Nk∑
i=1

wiΓk
N (x : µiΓk

,Σi
Γk
). (45)
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Algorithm 4 Particle PHD Filter Recursion at Time k
1: Input: {xik−1, w

i
k−1}

Lk−1

i=1 from time (k − 1), Zk measurements
2: for i = 1, . . . , Lk−1 do
3: Sample x̃ik ∼ q(·|xik−1, Zk)

4: Set w̃ik|k−1 =
ϕ(x̃ik|x

i
k−1)PS,k|k−1(x

i
k−1)

q(x̃ik|x
i
k−1,Zk)

wik−1

5: for i = Lk−1 + 1, . . . , Nk do
6: Sample x̃ik ∼ rk(·|Zk)
7: Set w̃ik|k−1 =

1
Nk−Lk−1

γk(x̃
i
k)

rk(x̃
i
k|Zk)

8: where rk(·|Zk) is the importance density such that γk(x̃ik) > 0
9: PS,k|k−1(x

i
k−1) is the probability of survival

10: Nk − Lk−1 is the number of new born objects
11: for z ∈ Zk do

12: Ck(z) =
Nk∑
i=1

ζk(z, x̃
i
k)w̃

i
k|k−1

13: where ζk(z, x) = PD,k(x)ψk(z|x)
pF,k(z)

is the detection to false alarm ratio of z given x.
14: for i = 1, . . . , Nk do
15: Update the weights
16: w̃ik =

[
1− PD,k(x̃

i
k) +

∑
z∈Zk

ζk(z,x̃
i
k)

ϵF,k+Ck(z)

]
w̃ik|k−1

17: where ϵF,k is the expected number of false alarms
18: Compute Ŵk|k =

∑
i=1

Nkw̃
i
k

19: Resample {x̃ik,
wi

k

Ŵk|k
}Nk
i=1 to get {xik, wik}

Lk
i=1

The update equation is

νk(x) = [1− PD,k]νk|k−1(x) +
∑
z∈Zk

ζk(z, x)νk|k−1(x)

λF,k + ⟨ζk(z, ·), νk|k−1⟩
(46)

where PD,k is the probability of detection and ζk(z, x) =
PD,k(x)ψk(z|x)

pF,k(z)
. Note that pF,k is the

density of false alarm and λF,k is the expected number of false alarms at time k. We apply
the particle PHD filter algorithm summarized in Algorithm 4 to a problem of tracking with
two objects with Gaussian noise. Figure 5 demonstrate the PHD filter tracking method.

4.3 Labeled Multi-Bernoulli Filtering
The labeled multi-Bernoulli filter is another approximation of the Bayesian multi-object
tracking [14]. Each object is labeled by an ordered pair ℓ = (k, i) for k as the time of birth
and i as the unique index to differentiate among objects born at time same time. In addition
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Figure 5: Particle PHD filter to track two objects.

to the aforementioned spaces, the label space for new born objects is defined as Lk. An
object at time k has state (x, ℓ) for x ∈ X and ℓ ∈ Lk. Set L(X) to denote the set of labels
for X. We assume X and L have the same cardinality. We define ∆(X) = δ|X|[|X|] and
ξ : Lk → {0, 1, . . . , |Z|} to be the distinct label indicator and association map with Ξk = {ξ},
respectively.

The prediction and update equations can be computed as follows [15, 14, 16]. The
prediction equation is

p(X|Zk−1) = ∆(X)
∑

η∈Ξk−1

wηk−1(L(X))[pηk−1]
X (47)

where pηk−1 is a probability estimation, η = (ξ1, . . . , ξk−1) ∈ Ξk, and each weight wηk−1 > 0
and ∑

L

∑
η

wηk−1(L) = 1.

Also the cardinality distribution equals

ρk−1(n) =
∑
L

∑
η

δn(|L|)wηk−1(L). (48)

We demonstrate the importance of the labeled multi-Bernoulli method through simulations.
Figure 6 displays the cardinality estimation for 5 objects using the labeled multi-Bernoulli
filter. We also demonstrate the performance of this multi-object filtering method for 10,000
Monte Carlo simulations. The optimal sub-pattern assignment (OSPA) [17] for order p = 1
and cut-off c = 100 is depicted in Figure 7.
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Figure 6: Cardinality estimation using labeled multi-Bernoulli filtering.
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Figure 7: Labeled multi-Bernoulli OSPA performance for order p = 1 and cut-off c = 100
for 10000 MCMC simulations.

Recently, nonparametric models have attracted a lot of attention. A Dirichlet process is
employed to address issues in a linear dynamic model [18]. A hierarchical modeling as a prior
on the modes on the maneuvering problem is studied [19]. More advanced multiple object
tracking models are introduced by using the dependent Dirichlet processes and Pitman-Yor
processes [20, 21, 22, 23, 24, 25, 26]. A comprehensive review of the Dirichlet process may
be found in [27].

5 Conclusion
We have simulated the some useful stochastic filtering methods to various linear and non-
linear state space models. We also compared their results appropriately and discussed their
performance. We have also discussed some of the fundamentals of particle filter algorithm
with worked out examples. We discuss the hidden Markov chain and its properties. we
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studied some newer filtering methods for multiple object tracking. It is obvious that the
application of a particular filtering method obviously depends on the problem presented.
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