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Be approximately right rather.than

Al

exactly wrong. '

John Tukey (1915-2000)
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Multi-Object Tracking (MOT)

previous time time step k
Dynamic multi-object tracking problem: step (k-1)

Jointly estimate the number of objects
and the states using received data

= Multiple objects: unknown time-
varying number; leave, enter or stay

in scene at any time step, unknown

identity/label
Challenges:
= Each survived object transitions to « Track unknown time-varying
the next time according to a number of objects

« Unknown state identity

» Robustly associate objects at

= New objects may join the scene each time step

* Uncertainty on parameters due
to multiple environmental
conditions: high noise,
interference, or clutter

probability transition kernel

= Observations: A set of observations
collected from the sensor
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Vignette of the Contributions

O Dependent Dirichlet process (DDP) prior modeling over time-
evolving object state distribution for MOT problem

» Identity learning for multiple object tracking
O Dependent Pitman-Yor (DPY) process prior to incorporate learning

algorithm over time-evolving object state distribution based on
measurements to fully capture dependence among the states

* More available clusters to capture full dependency & more likely to have
less popular clusters

0 Multiple Object Tracking through Infinite Random Trees
« Tracking multiple objects by defining a prior over infinite random trees
— A nonparametric modeling based on diffusion processes
0 Multimodal Dependent Measurements
« Multimodal dependent measurements and single object tracking

— Use the information provided by the multiple sensor to track more
accurately

* Multimodal dependent measurements and multiple objects tracking

— Generalize the problem to a multi-object multimodal dependent
measurements
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Related Work

1. Bayesian methods for a single object tracking
» Kalman filter, particle filter, interactive multiple modal for
maneuvering, the nearest neighbor method
2. Random finite set theory for multiple object tracking

» Multiple hypothesis testing, probability hypothesis density
filter, labeled multi-Bernoulli (LMB)

3. Deep learning models for multiple object tracking
4. Multimodal dependent measurements

> Exponentially embedded families for multimodal sensor, target

tracking using multi-modal sensing with waveform
configuration, a parametric classification rule based on the

exponentially embedded family
5. Bayesian nonparametric modeling for tracking

> Evolutionary clustering, hierarchical Dirichlet process for
maneuvering, Dirichlet process for linear dynamic system
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Dependent Dirichlet Process Modeling

O Introducing a well defined dependent Dirichlet process:
= Captures the survival, birth, and death
= Dependent structure to update object cardinality
= Conditional distribution given the immediate past is a DP

= Easy models to do inference through MCMC and VB methods
where do not depend on the initial values

= Shown this prior leads to a consistent posterior distribution
= Contraction rate matches the optimal minimax rate
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Simulations: DDP-EEM Modeling
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Bernoulli filtering
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Simulations: DDP-EEM Modeling

100 1 1
OSPA Location DDP
S
S LMB
§ 50 ok
o «
% DDP
O \ '
10 20 30 40 50 60 70 80 90 100
Time, k
100 T*

OSPA Cardinality
5

Performance comparison: OSPA comparison for 10000 MCMC
simulations and order p =1, cut-off c =100
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Dependent Pitman-Yor Modeling

O Introducing a well defined dependent Pitman-Yor process:
= Fully captures the survival, birth, and death
= Dependent structure to update object cardinality
= Conditional distribution given the immediate past is a PY
* Introduced an easy inferential models based on MCMC and VB

» Compared to dependent Dirichlet process (DDP): more
available clusters to capture full dependency & likely to have

less popular clusters
= DDP: expected number of clusters « log(NV)

= DPY: expected number of clusters ,, nd \
\ # of objects

concentration discount
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Simulations: DDP vs DPY

Performance comparison between DDP and DPY based prior modeling
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Dynamic System Modeling

Motion Model:
. Unknown state vector of £ object: X¢k, £=1,..., Ng
« If the object were present at time (k-1), then: \
Object
Xek = fe(Xek—1) + Wgk—1 cardinality
Transition function — T Modeling error

« This model implied that each existing object x, .| stays in the scene
with probabilityPg,km_l and transitions with probability transition
kernel Q@(Xﬁ,k—laxﬁ,k)

Measurement Model:

- Measurement vector: Zmx, m=1,..., My
« If 71th measurement were originated from {th object, then

Zm.k = hrp(Xe k) + W,
P £_
Relationship between measurement & state Measurement noise

- This model leads to the likelihood P(Zm,k|X¢ k, ©)
Goal: Find the posterior distribution p(Xg,k;|Zm,]{;, @)
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A Nonparametric Prior on
Random Infinite Trees In
Multiple Object Tracking
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Dependent Poisson Diffusion Process (D-PoDP) &

FsuU random Tress

= Modeling uncertainty over trees; path/branch generated by
diffusion process (generate samples using Brownian motion at
) k=0 TT=i=rocess is exchangeable

= Branching probability: probability of selecting a branch vs
diverging, depends on number of samples previously followed
same branch

= Dependent as prior can incorporate time-dependent learned
information

= Probability transition kernel Qo, (Xﬁ,k—la Xe,k) with unknown
parameters (.

> Use a dependent diffusion process on a tree as prior on 6}

> Tree leaf/node: object state, branch: cluster of states in a
hierarchy

» Find trajectory of each object by tracing path on tree
» Predict and update number of objects at each time
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ESuU Dependent Poisson Diffusion Process (D-PoDP)
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o £3
: t
i (b1, 21) « Assign probability to survived
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o CyrC $4
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For instance, at time k =0,
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points a,b, and ¢ and its underlying
tree ps X G — |VB k|k—1|7

/ \\
Hyperparameter

# of survived branch node

(Moraffah & Papandreou 2019)
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D-PoDP: Density Estimation

At time Kk,

Poi distributi
a For each Qg,k|k_1 c Sa,k|k—1 oisson distribution

, draw
. a=uX)

Nekle—1 ~ Po( 2|Saak|k—1

And generate Ne,k|k—1 atoms given (), k|k—1 using the
diffusion process ’

Q For ) , draw

\ Pax
Ns glk—1 ~ Po( > )

And generate N(;,M .—1 atoms from the base distribution

Q Draw x¢x|0¢r ~ G(:|001)
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Dependent Mixture Model and Inference

O Use constructed prior as mixing distribution to infer measurement
distributions

= Select parameter 0, .. at time ¥ with probability 7, proportional
to the summation of number of measurements that already
selected same parameter and number of object with the shared

branch, i.e., Set of all nodes at time k
e
e X Ny g+ |Sak—1] for Opr—1 € Sar-1,001 € Vi

= New parameters are selected with probability proportional to ¢
U Dependent Mixture model

Zm k|Xex, Ok, e ~ F(-|x0x,00x)

Comes from the physical model

0 Use a MCMC sampler to do inference
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l. Simulations: Comparison to LMB

Track five objects for time-varying objects
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l. Simulations: Comparison to LMB

Performance comparison between D-PoDP and LMB trackers
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OSPA comparison for range (top) and cardinality (bottom) over 10000
MCMC simulations and order p =1 and cut-off c=100
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Esu . Simulations: Comparison to Dependent Pitman-Yor

Performance comparison for D-PoDP and proposed Dependent
Pitman-Yor process

OSPA Location

) OSPA Cardinality

40 + -h F {
oY 3 1
10 20 30 40 50 60 70 80 90 100

Time, k

OSPA comparison between D-PoDP and DPY method for 10000 MCMC simulations and
for order p = 1 and cut-off c = 100

[
o

OSPA Cardinality
o

N
o

» Similar performance, however, D-PoDP is much more efficient and
simpler to implement and estimate the object trajectory
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Multimodal Dependent
Measurements
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Integration of Dependent Observations from Multiple

Sensors to Track a Single Object

Multimodal framework allows for
integration of complementary
information in analyzing a scene
Challenges:

« Time-varying number of
observations (unknown at each
time step)

* Observations are unordered: no
measurement-to-model association

* Multiple environmental conditions:
high noise levels, clutter,
interference

« How to group dependent
measurements so that :

a. Dependency among

= I-band radar: angular accuracy
= K-band radar: short ranges
= electro-optical (EO) infrared

camera: target identification and measurements is captured
observation b. Sensor information is
preserved

FULTON schools of engineering Signal Processing & Adaptive Sensing Laboratory




Tracking Formulation using Measurements from

Fsu Multiple Sensors

= Unknown object state vector:
xp = f(xp—1) +up—1

Possibly a nonlinear transition function modeling error

= Measurement model for mth sensor

Zn k= hm(Xg) + Wpy i m=1,..., M (M = # of sensors)

N

mth sensor measurement noise

Dependent measurements
Unordered measurements and correspond to
different model
Object association

Multimodal sensing to mmmsmm)  Hierarchical DP
improve learning algorithms
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|. HDP-DM: HDP Prior

Hierarchical Dirichlet process to group measurements and improve the performance.
Propose “Hierarchical Dirichlet Process for Dependent Measurements (HDP-DM)”
modeling

= With an HDP prior on the parameters of the measurements
collected from the sensors, the distribution of the measurements
can be modeled as

GO ~ DP(”* H)

OO
im | Go ~DP(v,Go), m=1,...M
’ (1)) —to{n)y— (o2 —et)
¢ | Gy~ Gy i=1,... Ly,

Zs;)k | ”’5:1)1\ ~ F((b(i) )

“m,k

= This method clusters measurements that are collected by each
sensor and estimates joint density of dependent measurements.

(Moraffah & Papandreou 2019)
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Il. HDP-DM: Hypothesis Testing

» Hypothesis Testing for Object Detection

» The detection test-statistic is based on the binary hypothesis
/HO . Zm.k = Wn.k
Hi:Zmyp = hv'-m.(Xk.) + W,k

= An object is detected using the measurements of the mth
sensor if the Neyman-Pearson test statistic exceeds the
threshold

P(Zm.k | Xg; 7-[1>
P(Zm.kl. ’Ho)

Tm (Zm.kg (l‘)m_.k; Xk) =

If measurements from the same sensor are assumed
independent, the likelihood ratio simplifies to a product of
individual likelihoods that still preserve dependency among
measurements from different sensors
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lll. HDP-DM: Target Tracking Method

= Bayesian Single Object Tracking Method
» The estimated state is given by the posterior mean

x), = E|p(xx|Zx)]

» The tail recursive function for the prediction is given by

The transition kernel
originated from the
physical model
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lll. HDP-DM: Target Tracking Method

= At time step k, the Bayesian recursion is given by

Prediction Equation

Measurements collected by M sensors modeled through HDP mixture

» To compute this probability, we use the tail recursive equation and
the density of 2, estimated using the HDP mixture obtained as

p mk|Xk Zﬂ-mjf |9]k

Due to physical model

Tm = (Tm.1, Tm 2, -+ ) Where m,, ~ DP(n, GEM(v))
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Simulations: HDP-DM

We simulate dependent measurements obtained from a
multimodal sensing system with radio frequency (RF) and

electro-optical (EO) sensors.

Comparison for SNR = -3 dB
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Simulations: HDP-DM

= HDP-DM performance as a function of SNR
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- Integration of Dependent Observations from Multiple
Fsl Sensors to Track Multiple Objects

Multiple Object Tracking with Dependent Measurements from
Multiple Sensors

« Accurately estimate the time evolving object trajectory as well as
object cardinality —> Use the dependency among the
measurements to estimate more accurately

Challenges:

O Robustly associate each object Solution:

O Jointly estimate the object cardinality v" Group data in a hierarchical
as well the object trajectory Manner

L Object identity and object cardinality |:> v" Dependent Modeling such
at each time are dependent as DDP-EMM

O Dependency among measurements v’ Hierarchical Dirichlet
such that the sensor information is process mixture modeling |
preserved

O Inference |

(Moraffah & Papandreou 2019)
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ESsu Dependent Dirichlet Process State Transitioning Prior

Prior Construction to capture . . so that the
conditional distribution is a Dirichlet process

Case 1: The / th object belongs to one of the survived and transitioned
clusters from time (k — 1)and occupied at least by one of the previous

¢ — 1 objects. The object selects one of these clusters with probability:

IT; (Select ]W,_kl) X [V]:]k—l}j + [Vk}j
95,_/%1 = {01k;- - 00—1,1} / Size of jth clus‘te\r at time k

Size of the jth cluster after transitioning

Where the normalizing constant equals Z[Vk"]k_ﬁi + Z[Vk‘]i + « for
concentration parameter o i i
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Prior Construction

= Case 2: The /th object belongs to one of the survived and
transitioned clusters from time (k£ — 1) but this cluster has not
yet been occupied by any one the first / — 1 objects. The object

selects such a cluster with probability:

[I5(Select jth cluster not chosen yet\@f’_kl) X [V,:‘ k_l}j

Size of the jth cluster after transitioning

= Case 3: The object does not belong to any of the existing
clusters, thus a new cluster parameter is with probability:

[I3(New cluster) o« «

/

Concentration parameter

Signal Processing & Adaptive Sensing Laboratory
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Bayesian Inference

= Given the configurations at time (k — 1), the conditional
distribution is Dirichlet process

= Under mild conditions the state distribution follows:

Qg(xej-1,%2)f (Xl Casel
Y x x X

QQ(Xf,k—bXM)((@z,k-p e,k)f [%04/65(k]) - Case?2
Jef(xz,k\ﬁ)dﬂ(ﬂ) \ Cased

Transition kernel for parameters

X
p(xf,klxl,ka vy K1 ks Xk\k—la 9]9 k=

Transition probability kernel

Base distribution

f( ’6’) is derived from the physical based model

» Use a Hierarchical Dirichlet mixture modeling, group
measurements upon receiving and compute the likelihood based
on the physical model, compute the posterior distributionX¢.k|Z1.k Qf,k
using a MCMC method (Gibbs sampling)
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Simulations: Tracking

True and Estimated Location using

Location estimation in the presence of multiple
dependent measurements for 5 objects.

_ ) ____Multi Object Tracking with D : B . — .

ol - J ‘ 1 I |- Estimatea ||
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measurements. _
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Simulations: OSPA Performance

DDP-EMM dependent multiple sensors |

OSPA Location . DDP

OSPA Dist

OSPA Cardinality
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OSPA Comparison for Multi-Target Tracking with and without Using the
Dependent Measurements for order p = 1 and cut-off ¢ = 100 for 10000 MCMC
simulations
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Conclusion

O Nonparametric priors to fully capture state dependency to
robustly and efficiently track labels, cardinality, and trajectory of
multiple objects

= A model with the DP as the conditional distribution
— Exploit dependent DP to model dependencies in state prior

= A model with the PY as the conditional distribution
— Follows power law and hence higher probability for smaller cluster

= A model based on random infinite trees that follows power law
— Dependent Poisson diffusion process as prior on evolving trees
— State estimated by selecting path connected to each leaf

= A nonparametric modeling un multimodal scenarios to capture
measurement dependency as well as state dependency

— HDP models dependency, model association, and time-varying
cardinality of the measurements provided by each sensor

0 These models are all distribution free ( no parametric
assumption required)

0 Low computational cost for these modeling (MCMC/VB methods)
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There are three kinds of lies:

lies, damned lies, and statistics.

Attributed to Benjamin Disraeli by Mark Twain
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