

Tracking Multiple Objects with Dependent Measurements using Bayesian Nonparametric Modeling

Bahman Moraffah, Cesar Brito, Bindya Venkatesh, and Antonia Papandreou-Suppappola

School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ

Problem Statement

- Tracking a time-dependent number of objects using dependent measurements collected from multiple sensors
- Using statistically dependent measurements to determine objectstate association and at each time step time-varying object cardinality.

➤ Goals:

- ☐ Jointly estimate the object cardinality and identity
- ☐ Accuracy in both object identity and object-state association
- ☐ Tractability as objects are evolving
- ☐ Efficiency of algorithms to track and update
- ☐ Simplicity in implementation

➤ Our Contribution: Dependent Dirichlet Process - Hierarchical Dirichlet Process (DDP-HDP)

- ☐ Place a prior on temporally evolving objects states

 (a) Survival, (b) Birth, and (c) Death
- Bayesian nonparametric modeling; dependent Dirichlet process as a prior on the object states that captures birth, death, and survival.
- ☐ Adjust the weights among new and transitioned objects
- Inference: Hierarchical Bayesian modeling to cluster measurements and track objects
- ☐ Inference through Gibbs sampler
- ☐ Tracking algorithm that does NOT require high SNR
- Achieve higher estimation accuracy and lower computational intensity

Related Approaches:

> Bayesian Nonparametric Models

- Dependent Dirichlet process as prior [Moraffah 2018]
- Dependent Pitman-Yor process [Moraffah 2019]
- Dependent infinite Poisson diffusion tree Moraffah 2019
- Hierarchical Diriclet process for maneuvering [Fox 2011]
- Dynamic Clustering via DDP [Campbell 2013]
- Bayesian Inference for linear dynamic model [Caron 2007]
- k-means-like: Based on asymptotic analysis of DPM

> Random Finite Set

- Utilizes RFS to represent uncertainty in the number of objects as well as the state of objects [Mahler 2007]
- These methods are approximations of Multi-object filter
- For instance: Labeled multi-Bernoulli filtering Bryant 2017]

> Evolutionary Clustering

- Does not capture birth and death [Chakrabarti 2006]
- Number of cluster is known
- Does not include the dependence from time to time

DDP-HDP Model

> Dependent Dirichlet process Construction

Given the configurations at time (k-1): Transition from time (k-1) to k as fellows:

- ✓ Transition from time (k-1) to k: Each object may leave the scene w.p and $1 P_{k|k-1}$ stays and transitions w.p. $P_{k|k-1}$
- ✓ At time k: The choice of DDP on the object state distribution is based on the following dynamic dependencies:
 - [Case 1] The nth object from time (k-1) remains in the scene at time k, and it is reassigned to a cluster that has already been selected by one of the (n-1) previous objects at time k. The probability of choosing such a cluster:

$$\Pi_1(\text{Select }l\text{th assigned cluster}|\Theta_k) = \left([V_{k|k-1}^*]_l + [V_k]_l \right) / \left(\sum_m [V_{k|k-1}^*]_m + [V_k]_m + \alpha \right)$$

• [Case 2] The nth object from time (k-1) remains in the scene at time k and is assigned to a cluster that has been survived from time (k-1) but has not yet been selected by the previous (j-1) objects. The probability of choosing such cluster is given by:

$$\Pi_2(\text{Select }l\text{th unassigned cluster}|\Theta_k) = [V_{k|k-1}^*]_l / \left(\sum_m [V_{k|k-1}^*]_m + [V_k]_m + \alpha\right)$$

Case 3] The jth object is a new arrival object at time k and creates its own cluster with probability

$$\Pi_2(\text{Create a new cluster}|\Theta_k) = \alpha / \left(\sum_m [V_{k|k-1}^*]_m + [V_k]_m + \alpha\right)$$

✓ **Density Estimate:** The state distribution is given by :

$$p(\mathbf{x}_{n,k}|\text{rest}) = \begin{cases} p_{\theta}(\mathbf{x}_{n,k}|\mathbf{x}_{n,k-1})\nu(\theta_{n,k-1}^*, \theta_{n,k})f(\mathbf{x}_{n,k}|\theta_{n,k}^*), & \text{w.p. } \Pi_1 \\ p_{\theta}(\mathbf{x}_{n,k}|\mathbf{x}_{n,k-1}f(\mathbf{x}_{n,k}|\theta_{n,k}^*), & \text{w.p. } \Pi_2 \\ \int_{\theta} f(\mathbf{x}_{n,k}|\theta)dH(\theta), & \text{w.p. } \Pi_3 \end{cases}$$

> Hierarchical Mixture Modeling and Inference

Upon receiving measurements, exploit the hierarchical dependent Dirichlet process mixture modeling to make use of dependency among measurement.

✓ Hierarchical Dirichlet process over the dependent measurements

$$G_0|\eta, H_0 \sim \mathrm{DP}(\eta, H_0)$$

 $G_\ell|G_0 \sim \mathrm{DP}(\gamma, G_0), \ \ell = 1, \dots, L$
 $\phi_{m,k}^{(\ell)}|G_\ell \sim G_\ell, \ m = 1, \dots, M_k$

 \checkmark For mixing distribution R distribution on the measurements is thus

$$\mathbf{z}_{m,k}^{\ell} | \phi_{m,k}^{\ell}, \mathbf{x}_{1,k}, \dots, \mathbf{x}_{N_k,k} \sim R(\cdot | \phi_{m,k}^{\ell}, \mathbf{x}_{1,k}, \dots, \mathbf{x}_{N_k,k})$$

✓ Measurements collected from each sensor are clustered and utilized to robustly track trajectory of each object.

Experimental Results:

Figure: Actual and estimated x(top) and y(bottom) position against time through DDP-HDP algorithm.

Figure: (left) OSPA comparison between DDP-HDP and DDP-EMM: OSPA range(top) and time-dependent cardinality (bottom); (right) Comparison between learned cardinalities for DDP-HDP(top) and DDP-EMM(bottom).

*Comparison between this model and LMB is provided in the paper.

Summary

- We proposed a class of random measures to efficiently and robustly track multiple objects upon receiving measurements.
- A hierarchical mixture model is employed to account for the dependency among the measurements and make use of dependency to robustly estimate the object trajectory.
- Trajectory of time-varying objects can be estimated by integrating the proposed nonparametric prior (Dependent Dirichlet process) with a hierarchal Dirichlet process to estimate the trajectory of objects.
- The proposed dependent Dirichlet process prior integrated with hierarchical Dirichlet process introduces more flexibility to the modeling, and thus there is a significant improvement over existing tracking compared to other tracking methods, particularly, dependent Dirichlet process prior and labeled multi-Bernoulli.
- The algorithm is efficient to implement.